
Chapter 4

Quantum Entanglement

4.1 Nonseparability of EPR pairs

4.1.1 Hidden quantum information

The deep ways that quantum information differs from classical information
involve the properties, implications, and uses of quantum entanglement. Re-
call from §2.4.1 that a bipartite pure state is entangled if its Schmidt number
is greater than one. Entangled states are interesting because they exhibit
correlations that have no classical analog. We will begin the study of these
correlations in this chapter.

Recall, for example, the maximally entangled state of two qubits defined
in §3.4.1:

|φ+〉AB =
1√
2
(|00〉AB + |11〉AB). (4.1)

“Maximally entangled” means that when we trace over qubit B to find the
density operator ρA of qubit A, we obtain a multiple of the identity operator

ρA = trB(|φ+〉AB AB〈φ+) =
1

2
1A, (4.2)

(and similarly ρB = 1
2
1B). This means that if we measure spin A along

any axis, the result is completely random – we find spin up with probability
1/2 and spin down with probability 1/2. Therefore, if we perform any local
measurement of A or B, we acquire no information about the preparation of
the state, instead we merely generate a random bit. This situation contrasts
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2 CHAPTER 4. QUANTUM ENTANGLEMENT

sharply with case of a single qubit in a pure state; there we can store a bit by
preparing, say, either | ↑n̂〉 or | ↓n̂〉, and we can recover that bit reliably by
measuring along the n̂-axis. With two qubits, we ought to be able to store
two bits, but in the state |φ+〉AB this information is hidden; at least, we can’t
acquire it by measuring A or B.

In fact, |φ+〉 is one member of a basis of four mutually orthogonal states
for the two qubits, all of which are maximally entangled — the basis

|φ±〉 =
1√
2
(|00〉 ± |11〉),

|ψ±〉 =
1√
2
(|01〉 ± |10〉), (4.3)

introduced in §3.4.1. We can choose to prepare one of these four states, thus
encoding two bits in the state of the two-qubit system. One bit is the parity
bit (|φ〉 or |ψ〉) – are the two spins aligned or antialigned? The other is
the phase bit (+ or −) – what superposition was chosen of the two states
of like parity. Of course, we can recover the information by performing
an orthogonal measurement that projects onto the {|φ+〉, |φ−〉, |ψ+〉, |ψ−〉}
basis. But if the two qubits are distantly separated, we cannot acquire this
information locally; that is, by measuring A or measuring B.

What we can do locally is manipulate this information. Suppose that
Alice has access to qubit A, but not qubit B. She may apply σ3 to her
qubit, flipping the relative phase of |0〉A and |1〉A. This action flips the phase
bit stored in the entangled state:

|φ+〉 ↔ |φ−〉,
|ψ+〉 ↔ |ψ−〉. (4.4)

On the other hand, she can apply σ1, which flips her spin (|0〉A ↔ |1〉A), and
also flips the parity bit of the entangled state:

|φ+〉 ↔ |ψ+〉,
|φ−〉 ↔ −|ψ−〉. (4.5)

Bob can manipulate the entangled state similarly. In fact, as we discussed
in §2.4, either Alice or Bob can perform a local unitary transformation that
changes one maximally entangled state to any other maximally entangled
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state.1 What their local unitary transformations cannot do is alter ρA =
ρB = 1

2
1 – the information they are manipulating is information that neither

one can read.
But now suppose that Alice and Bob are able to exchange (classical)

messages about their measurement outcomes; together, then, they can learn
about how their measurements are correlated. The entangled basis states are
conveniently characterized as the simultaneous eigenstates of two commuting
observables:

σ
(A)
1 σ

(B)
1 ,

σ
(A)
3 σ

(B)
3 ; (4.6)

the eigenvalue of σ
(A)
3 σ

(B)
3 is the parity bit, and the eigenvalue of σ

(A)
1 σ

(B)
1 is

the phase bit. Since these operators commute, they can in principle be mea-
sured simultaneously. But they cannot be measured simultaneously if Alice
and Bob perform localized measurements. Alice and Bob could both choose
to measure their spins along the z-axis, preparing a simultaneous eigenstate
of σ

(A)
3 and σ

(B)
3 . Since σ

(A)
3 and σ

(B)
3 both commute with the parity operator

σ
(A)
3 σ

(B)
3 , their orthogonal measurements do not disturb the parity bit, and

they can combine their results to infer the parity bit. But σ
(A)
3 and σ

(B)
3 do

not commute with phase operator σ
(A)
1 σ

(B)
1 , so their measurement disturbs

the phase bit. On the other hand, they could both choose to measure their
spins along the x-axis; then they would learn the phase bit at the cost of
disturbing the parity bit. But they can’t have it both ways. To have hope of
acquiring the parity bit without disturbing the phase bit, they would need to
learn about the product σ

(A)
3 σ

(B)
3 without finding out anything about σ

(A)
3

and σ
(B)
3 separately. That cannot be done locally.

Now let us bring Alice and Bob together, so that they can operate on
their qubits jointly. How might they acquire both the parity bit and the
phase bit of their pair? By applying an appropriate unitary transformation,
they can rotate the entangled basis {|φ±〉, |ψ±〉} to the unentangled basis
{|00〉, |01〉, |10〉, |11〉}. Then they can measure qubits A and B separately to
acquire the bits they seek. How is this transformation constructed?

1But of course, this does not suffice to perform an arbitrary unitary transformation on
the four-dimensional space HA⊗HB , which contains states that are not maximally entan-
gled. The maximally entangled states are not a subspace – a superposition of maximally
entangled states typically is not maximally entangled.
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This is a good time to introduce notation that will be used heavily later in
the course, the quantum circuit notation. Qubits are denoted by horizontal
lines, and the single-qubit unitary transformation U is denoted:

U

A particular single-qubit unitary we will find useful is the Hadamard trans-
form

H =
1√
2

(

1 1
1 −1

)

=
1√
2
(σ1 + σ3), (4.7)

which has the properties

H2 = 1, (4.8)

and

Hσ1H = σ3,

Hσ3H = σ1. (4.9)

(We can envision H (up to an overall phase) as a θ = π rotation about the
axis n̂ = 1√

2
(n̂1 + n̂3) that rotates x̂ to ẑ and vice-versa; we have

R(n̂, θ) = 1 cos
θ

2
+ in̂ · ~σ sin

θ

2
= i

1√
2
(σ1 + σ3) = iH.)

(4.10)

Also useful is the two-qubit transformation known as the XOR or controlled-
NOT transformation; it acts as

CNOT : |a, b〉 → |a, a⊕ b〉, (4.11)

on the basis states a, b = 0, 1, where a⊕ b denotes addition modulo 2, and is
denoted:

a

b

w

�
��

a⊕ b

a
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Thus this gate flips the second bit if the first is 1, and acts trivially if the
first bit is 0; we see that

(CNOT)2 = 1. (4.12)

We call a the control (or source) bit of the CNOT, and b the target bit.
By composing these “primitive” transformations, or quantum gates, we

can build other unitary transformations. For example, the “circuit”

H u

i

(to be read from left to right) represents the product of H applied to the
first qubit followed by CNOT with the first bit as the source and the second
bit as the target. It is straightforward to see that this circuit transforms the
standard basis to the entangled basis,

|00〉 → 1√
2
(|0〉 + |1〉)|0〉 → |φ+〉,

|01〉 → 1√
2
(|0〉 + |1〉)|1〉 → |ψ+〉,

|10〉 → 1√
2
(|0〉 − |1〉)|0〉 → |φ−〉,

|11〉 → 1√
2
(|0〉 − |1〉)|1〉 → |ψ−〉, (4.13)

so that the first bit becomes the phase bit in the entangled basis, and the
second bit becomes the parity bit.

Similarly, we can invert the transformation by running the circuit back-
wards (since both CNOT and H square to the identity); if we apply the
inverted circuit to an entangled state, and then measure both bits, we can
learn the value of both the phase bit and the parity bit.

Of course, H acts on only one of the qubits; the “nonlocal” part of our
circuit is the controlled-NOT gate – this is the operation that establishes or
removes entanglement. If we could only perform an “interstellar CNOT,”
we would be able to create entanglement among distantly separated pairs, or
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extract the information encoded in entanglement. But we can’t. To do its
job, the CNOT gate must act on its target without revealing the value of
its source. Local operations and classical communication will not suffice.

4.1.2 Einstein locality and hidden variables

Einstein was disturbed by quantum entanglement. Eventually, he along with
Podolsky and Rosen sharpened their discomfort into what they regarded as
a paradox. As later reinterpreted by Bohm, the situation they described is
really the same as that discussed in §2.5.3. Given a maximally entangled
state of two qubits shared by Alice and Bob, Alice can choose one of several
possible measurements to perform on her spin that will realize different pos-
sible ensemble interpretations of Bob’s density matrix; for example, she can
prepare either σ1 or σ3 eigenstates.

We have seen that Alice and Bob are unable to exploit this phenomenon
for faster-than-light communication. Einstein knew this but he was still
dissatisfied. He felt that in order to be considered a complete description
of physical reality a theory should meet a stronger criterion, that might be
called Einstein locality:

Suppose that A and B are spacelike separated systems. Then in
a complete description of physical reality an action performed on
system A must not modify the description of system B.

But if A and B are entangled, a measurement of A is performed and a
particular outcome is known to have been obtained, then the density matrix
of B does change. Therefore, by Einstein’s criterion, the description of a
quantum system by a wavefunction cannot be considered complete.

Einstein seemed to envision a more complete description that would re-
move the indeterminacy of quantum mechanics. A class of theories with this
feature are called local hidden-variable theories. In a hidden variable the-
ory, measurement is actually fundamentally deterministic, but appears to be
probabilistic because some degrees of freedom are not precisely known. For
example, perhaps when a spin is prepared in what quantum theory would
describe as the pure state | ↑ẑ〉, there is actually a deeper theory in which
the state prepared is parametrized as (ẑ, λ) where λ (0 ≤ λ ≤ 1) is the
hidden variable. Suppose that with present-day experimental technique, we
have no control over λ, so when we prepare the spin state, λ might take any
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value – the probability distribution governing its value is uniform on the unit
interval.

Now suppose that when we measure the spin along an axis rotated by θ
from the ẑ axis, the outcome will be

| ↑θ〉, for 0 ≤ λ ≤ cos2 θ

2

| ↓θ〉, for cos2 θ

2
< λ ≤ 1. (4.14)

If we know λ, the outcome is deterministic, but if λ is completely unknown,
then the probability distribution governing the measurement will agree with
the predictions of quantum theory.

Now, what about entangled states? When we say that a hidden variable
theory is local, we mean that it satisfies the Einstein locality constraint. A
measurement of A does not modify the values of the variables that govern
the measurements of B. This seems to be what Einstein had in mind when
he envisioned a more complete description.

4.1.3 Bell Inequalities

John Bell’s fruitful idea was to test Einstein locality by considering the
quantitative properties of the correlations between measurement outcomes
obtained by Bob and Alice.2 Let’s first examine the predictions of quantum
mechanics regarding these correlations.

Note that the state |ψ−〉 has the properties

(~σ(A) + ~σ(B))|ψ−〉 = 0, (4.15)

as we can see by explicit computation. Now consider the expectation value

〈φ−|(~σ(A) · n̂)(~σ(B) · m̂)|ψ−〉. (4.16)

Since we can replace ~σ(B) by −~σ(A) acting on |ψ−〉, this can be expressed as

− 〈(~σ(A) · n̂)(~σ(A) · m̂)〉 =

− nimjtr(ρAσ
(A)
i σ

(A)
j ) = −nimjδij = −n̂ · m̂ = − cos θ,

(4.17)

2A good reference on Bell inequalities is A. Peres, Quantum Theory: Concepts and

Methods, chapter 6.
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where θ is the angle between the axes n̂ and m̂. Thus we find that the
measurement outcomes are always perfectly anticorrelated when we measure
both spins along the same axis n̂, and we have also obtained a more general
result that applies when the two axes are different. Since the projection
operator onto the spin up (spin down) states along n̂ is E(n̂,±) = 1

2
(1±n̂·~σ),

we also obtain

〈ψ−|E(A)(n̂,+)E(B)(m̂,+)|ψ−〉

= 〈ψ−|E(A)(n̂,−)E(B)(m̂,−)|ψ−〉 =
1

4
(1 − cos θ),

〈ψ−|E(A)(n̂,+)E(B)(m̂,−)|ψ−〉

= 〈ψ−|E(A)(n̂,−)E(B)(m̂,+)|ψ−〉 =
1

4
(1 + cos θ); (4.18)

The probability that the outcomes are opposite is 1
2
(1+cos θ), and the prob-

ability that the outcomes are the same is 1
2
(1 − cos θ).

Now suppose Alice will measure her spin along one of the three axes in
the x− z plane,

n̂1 = (0, 0, 1)

n̂2 =

(√
3

2
, 0,−1

2

)

n̂3 =

(

−
√

3

2
, 0,−1

2

)

. (4.19)

Once she performs the measurement, she disturbs the state of the spin, so
she won’t have a chance to find out what would have happened if she had
measured along a different axis. Or will she? If she shares the state |ψ−〉
with Bob, then Bob can help her. If Bob measures along, say, n̂2, and sends
the result to Alice, then Alice knows what would have happened if she had
measured along n̂2, since the results are perfectly anticorrelated. Now she can
go ahead and measure along n̂1 as well. According to quantum mechanics,
the probability that measuring along n̂1, and n̂2 give the same result is

Psame =
1

2
(1 − cos θ) =

1

4
. (4.20)

(We have cos θ = 1/2 because Bob measures along −n̂2 to obtain Alice’s
result for measuring along n̂2). In the same way, Alice and Bob can work
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together to determine outcomes for the measurement of Alice’s spin along
any two of the axes n̂1, n̂2, and n̂3.

It is as though three coins are resting on a table; each coin has either the
heads (H) or tails (T) side facing up, but the coins are covered, at first, so
we don’t know which. It is possible to reveal two of the coins (measure the
spin along two of the axes) to see if they are H or T , but then the third coin
always disappears before we get a chance to uncover it (we can’t measure the
spin along the third axis).

Now suppose that there are actually local hidden variables that provide
a complete description of this system, and the quantum correlations are to
arise from a probability distribution governing the hidden variables. Then,
in this context, the Bell inequality is the statement

Psame(1, 2) + Psame(1, 3) + Psame(2, 3) ≥ 1, (4.21)

where Psame(i, j) denotes the probability that coins i and j have the same
value (HH or TT ). This is satisfied by any probability distribution for the
three coins because no matter what the values of the coins, there will always
be two that are the same. But in quantum mechanics,

Psame(1, 2) + Psame(1, 3) + Psame(2, 3) = 3 · 1

4
=

3

4
< 1.

(4.22)

We have found that the correlations predicted by quantum theory are incom-
patible with the local hidden variable hypothesis.

What are the implications? To some people, the peculiar correlations
unmasked by Bell’s theorem call out for a deeper explanation than quantum
mechanics seems to provide. They see the EPR phenomenon as a harbinger
of new physics awaiting discovery. But they may be wrong. We have been
waiting over 60 years since EPR, and so far no new physics.

Perhaps we have learned that it can be dangerous to reason about what
might have happened, but didn’t actually happen. (Of course, we do this
all the time in our everyday lives, and we usually get away with it, but
sometimes it gets us into trouble.) I claimed that Alice knew what would
happen when she measured along n̂2, because Bob measured along n̂2, and
every time we have ever checked, their measurement outcomes are always
perfectly anticorrelated. But Alice did not measure along n̂2; she measured
along n̂1 instead. We got into trouble by trying to assign probabilities to the
outcomes of measurements along n̂1, n̂2, and n̂3, even though we can only
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perform one of those measurements. This turned out to lead to mathematical
inconsistencies, so we had better not do it. From this viewpoint we have
affirmed Bohr’s principle of complementary — we are forbidden to consider
simultaneously the possible outcomes of two mutually exclusive experiments.

Another common attitude is that the violations of the Bell inequalities
(confirmed experimentally) have exposed an essential nonlocality built into
the quantum description of Nature. One who espouses this view has implic-
itly rejected the complementarity principle. If we do insist on talking about
outcomes of mutually exclusive experiments then we are forced to conclude
that Alice’s choice of measurement actually exerted a subtle influence on the
outcome of Bob’s measurement. This is what is meant by the “nonlocality”
of quantum theory.

By ruling out local hidden variables, Bell demolished Einstein’s dream
that the indeterminacy of quantum theory could be eradicated by adopting
a more complete, yet still local, description of Nature. If we accept locality
as an inviolable principle, then we are forced to accept randomness as an
unavoidable and intrinsic feature of quantum measurement, rather than a
consequence of incomplete knowledge.

The human mind seems to be poorly equipped to grasp the correlations
exhibited by entangled quantum states, and so we speak of the weirdness
of quantum theory. But whatever your attitude, experiment forces you to
accept the existence of the weird correlations among the measurement out-
comes. There is no big mystery about how the correlations were established
– we saw that it was necessary for Alice and Bob to get together at some
point to create entanglement among their qubits. The novelty is that, even
when A and B are distantly separated, we cannot accurately regard A and
B as two separate qubits, and use classical information to characterize how
they are correlated. They are more than just correlated, they are a single
inseparable entity. They are entangled.

4.1.4 Photons

Experiments that test the Bell inequality are done with entangled photons,
not with spin−1

2
objects. What are the quantum-mechanical predictions for

photons?
Suppose, for example, that an excited atom emits two photons that come

out back to back, with vanishing angular momentum and even parity. If |x〉
and |y〉 are horizontal and vertical linear polarization states of the photon,
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then we have seen that

|+〉 =
1√
2
(|x〉 + i|y〉),

|−〉 =
1√
2
(i|x〉+ |y〉), (4.23)

are the eigenstates of helicity (angular momentum along the axis of propaga-
tion ẑ. For two photons, one propagating in the +ẑ direction, and the other
in the −ẑ direction, the states

|+〉A|−〉B
|−〉A|+〉B (4.24)

are invariant under rotations about ẑ. (The photons have opposite values of
Jz, but the same helicity, since they are propagating in opposite directions.)
Under a reflection in the y − z plane, the polarization states are modified
according to

|x〉 → −|x〉, |+〉 → +i|−〉,
|y〉 → |y〉, |−〉 → −i|+〉; (4.25)

therefore, the parity eigenstates are entangled states

1√
2
(|+〉A|−〉B ± |−〉A|+〉B). (4.26)

The state with Jz = 0 and even parity, then, expressed in terms of the linear
polarization states, is

− i√
2
(|+〉A|−〉B + |−〉A|+〉B)

=
1√
2
(|xx〉AB + |yy〉AB)n = |φ+〉AB . (4.27)

Because of invariance under rotations about ẑ, the state has this form irre-
spective of how we orient the x and y axes.

We can use a polarization analyzer to measure the linear polarization of
either photon along any axis in the xy plane. Let |x(θ)〉 and |y(θ)〉 denote
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the linear polarization eigenstates along axes rotated by angle θ relative to
the canonical x and y axes. We may define an operator (the analog of ~σ · n̂)

τ (θ) = |x(θ)〉〈x(θ)| − |y(θ)〉〈y(θ)|, (4.28)

which has these polarization states as eigenstates with respective eigenvalues
±1. Since

|x(θ)〉 =

(

cos θ
sin θ

)

, |y(θ)〉 =

(

− sin θ
cos θ

)

, (4.29)

in the |x〉, |y〉 basis, we can easily compute the expectation value

AB〈φ+|τ (A)(θ1)τ
(B)(θ2)|φ+〉AB . (4.30)

Using rotational invariance:

= AB〈φ+|τ (A)(0)τ (B)(θ2 − θ1)|φ+〉AB

=
1

2B
〈x|τ (B)(θ2 − θ1)|x〉B − 1

2B
〈y|τ (B)(θ2 − θ1)|y〉B

= cos2(θ2 − θ1) − sin2(θ2 − θ1) = cos[2(θ2 − θ1)]. (4.31)

(For spin-1
2

objects, we would obtain

AB〈φ+|(~σ(A) · n̂1)(~σ
(B) · n̂2) = n̂1 · n̂2 = cos(θ2 − θ1); (4.32)

the argument of the cosine is different than in the case of photons, because
the half angle θ/2 appears in the formula analogous to eq. (4.29).)

4.1.5 More Bell inequalities

So far, we have considered only one (particularly interesting) case of the Bell
inequality. Here we will generalize the result.

Consider a correlated pair of photons, A and B. We may choose to
measure the polarization of photon A along either one of two axes, α or α′.
The corresponding observables are denoted

a = τ (A)(α)

a′ = τ (A)(α′). (4.33)
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Similarly, we may choose to measure photon B along either axis β or axis β ′;
the corresponding observables are

b = τ (B)(β)

b = τ (B)(β ′). (4.34)

We will, to begin with, consider the special case α′ = β ′ ≡ γ.
Now, if we make the local hidden variable hypothesis, what can be in-

fer about the correlations among these observables? We’ll assume that the
prediction of quantum mechanics is satisfied if we measure a′ and b′, namely

〈a′b′〉 = 〈τ (B)(γ)τ (B)(γ)〉 = 1; (4.35)

when we measure both photons along the same axes, the outcomes always
agree. Therefore, these two observables have exactly the same functional
dependence on the hidden variables – they are really the same observable,
with we will denote c.

Now, let a, b, and c be any three observables with the properties

a, b, c = ±1; (4.36)

i.e., they are functions of the hidden variables that take only the two values
±1. These functions satisfy the identity

a(b − c) = ab(1 − bc). (4.37)

(We can easily verify the identity by considering the cases b − c = 0, 2,−2.)
Now we take expectation values by integrating over the hidden variables,
weighted by a nonnegative probability distribution:

〈ab〉 − 〈ac〉 = 〈ab(1 − bc)〉. (4.38)

Furthermore, since ab = ±1, and 1 − bc is nonnegative, we have

|〈ab(1 − bc)〉|
≤ |〈1 − bc〉| = 1 − 〈bc〉. (4.39)

We conclude that

|〈ab〉 − 〈ac〉| ≤ 1 − 〈bc〉. (4.40)
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This is the Bell inequality.
To make contact with our earlier discussion, consider a pair of spin-1

2

objects in the state |φ+〉, where α, β, γ are separated by successive 60o angles.
Then quantum mechanics predicts

〈ab〉 =
1

2

〈bc〉 =
1

2

〈ac〉 = −1

2
, (4.41)

which violates the Bell inequality:

1 =
1

2
+

1

2
6≤ 1 − 1

2
=

1

2
. (4.42)

For photons, to obtain the same violation, we halve the angles, so α, β, γ are
separated by 30o angles.

Return now to the more general case α′ 6= β ′. We readily see that
a,a′, b, b′ = ±1 implies that

(a + a′)b − (a − a′)b′ = ±2, (4.43)

(by considering the two cases a + a′ = 0 and a − a′ = 0), or

〈ab〉 + 〈a′b〉 + 〈a′b′〉 − 〈ab′〉 = 〈θ〉, (4.44)

where θ = ±2. Evidently

|〈θ〉| ≤ 2, (4.45)

so that

|〈ab〉 + 〈a′b〉 + 〈a′b′〉 − 〈ab′〉| ≤ 2. (4.46)

This result is called the CHSH (Clauser-Horne-Shimony-Holt) inequality. To
see that quantum mechanics violates it, consider the case for photons where
α, β, α′, β ′ are separated by successive 22.5◦ angles, so that the quantum-
mechanical predictions are

〈ab〉 = 〈a′b〉 = 〈a′b′〉 = cos
π

4
=

1√
2
,

〈ab′〉 = cos
3π

4
= − 1√

2
, (4.47)
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while

2
√

2 6≤ 2. (4.48)

4.1.6 Maximal violation

We can see that the case just considered (α, β, α′, β ′ separated by successive
22.5o angles) provides the largest possible quantum mechanical violation of
the CHSH inequality. In quantum theory, suppose that a,a′, b, b′ are ob-
servables that satisfy

a2 = a′2 = b2 = b′2 = 1, (4.49)

and

0 = [a, b] = [a, b′] = [a′, b] = [a′, b′]. (4.50)

Let

C = ab + a′b + a′b′ − ab′. (4.51)

Then

C2 = 4 + aba′b′ − a′bab′ + a′b′ab − ab′a′b. (4.52)

(You can check that the other terms cancel)

= 4 + [a,a′][b, b′]. (4.53)

The sup norm ‖ M ‖ of a bounded operator M is defined by

‖ M ‖= sup

|ψ〉

(

‖ M|ψ〉 ‖
‖ |ψ〉 ‖

)

; (4.54)

it is easy to verify that the sup norm has the properties

‖ MN ‖ ≤‖ M ‖‖ N ‖,
‖ M + N ‖ ≤‖ M ‖ + ‖ N ‖, (4.55)

and therefore

‖ [M,N] ‖≤‖ MN ‖ + ‖ NM ‖≤ 2 ‖ M ‖‖ N ‖ . (4.56)
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We conclude that

‖ C2 ‖≤ 4 + 4 ‖ a ‖ · ‖ a′ ‖ · ‖ b ‖ · ‖ b′ ‖= 8, (4.57)

or

‖ C ‖≤ 2
√

2 (4.58)

(Cirel’son’s inequality). Thus, the expectation value of C cannot exceed
2
√

2, precisely the value that we found to be attained in the case where
α, β, α′, β ′ are separated by successive 22.5o angles. The violation of the
CHSH inequality that we found is the largest violation allowed by quantum
theory.

4.1.7 The Aspect experiment

The CHSH inequality was convincingly tested for the first time by Aspect
and collaborators in 1982. Two entangled photons were produced in the de-
cay of an excited calcium atom, and each photon was directed by a switch
to one of two polarization analyzers, chosen pseudo-randomly. The photons
were detected about 12m apart, corresponding to a light travel time of about
40 ns. This time was considerably longer than either the cycle time of the
switch, or the difference in the times of arrival of the two photons. There-
fore the “decision” about which observable to measure was made after the
photons were already in flight, and the events that selected the axes for the
measurement of photons A and B were spacelike separated. The results were
consistent with the quantum predictions, and violated the CHSH inequal-
ity by five standard deviations. Since Aspect, many other experiments have
confirmed this finding.

4.1.8 Nonmaximal entanglement

So far, we have considered the Bell inequality violations predicted by quan-
tum theory for a maximally entangled state such as |φ+〉. But what about
more general states such as

|φ〉 = α|00〉 + β|11〉? (4.59)

(Any pure state of two qubits can be expressed this way in the Schmidt basis;
by adopting suitable phase conventions, we may assume that α and β are
real and nonnegative.)



4.1. NONSEPARABILITY OF EPR PAIRS 17

Consider first the extreme case of separable pure states, for which

〈ab〉 = 〈a〉〈b〉. (4.60)

In this case, it is clear that no Bell inequality violation can occur, because
we have already seen that a (local) hidden variable theory does exist that
correctly reproduces the predictions of quantum theory for a pure state of a
single qubit. Returning to the spin-1

2
notation, suppose that we measure the

spin of each particle along an axis n̂ = (sin θ, 0, cos θ) in the xz plane. Then

a = (σ(A) · n̂1) =

(

cos θ1 sin θ1

sin θ1 − cos θ1

)(A)

,

b = (σ(B) · n̂2) =

(

cos θ2 sin θ2

sin θ2 − cos θ2

)(B)

, (4.61)

so that quantum mechanics predicts

〈ab〉 = 〈φ|ab|φ〉
= cos θ1 cos θ2 + 2αβ sin θ1 sin θ2 (4.62)

(and we recover cos(θ1−θ2) in the maximally entangled case α = β = 1/
√

2).
Now let us consider, for simplicity, the (nonoptimal!) special case

θA = 0, θ′A =
π

2
, θ′B = −θB, (4.63)

so that the quantum predictions are:

〈ab〉 = cos θB = 〈ab′〉
〈a′b〉 = 2αβ sin θB = −〈a′b′〉 (4.64)

Plugging into the CHSH inequality, we obtain

| cos θB − 2αβ sin θB| ≤ 1, (4.65)

and we easily see that violations occur for θB close to 0 or π. Expanding to
linear order in θB, the left hand side is

' 1 − 2αβθB, (4.66)

which surely exceeds 1 for θB negative and small.
We have shown, then, that any entangled pure state of two qubits violates

some Bell inequality. It is not hard to generalize the argument to an arbitrary
bipartite pure state. For bipartite pure states, then, “entangled” is equivalent
to “Bell-inequality violating.” For bipartite mixed states, however, we will
see shortly that the situation is more subtle.
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4.2 Uses of Entanglement

After Bell’s work, quantum entanglement became a subject of intensive study
among those interested in the foundations of quantum theory. But more
recently (starting less than ten years ago), entanglement has come to be
viewed not just as a tool for exposing the weirdness of quantum mechanics,
but as a potentially valuable resource. By exploiting entangled quantum
states, we can perform tasks that are otherwise difficult or impossible.

4.2.1 Dense coding

Our first example is an application of entanglement to communication. Alice
wants to send messages to Bob. She might send classical bits (like dots and
dashes in Morse code), but let’s suppose that Alice and Bob are linked by
a quantum channel. For example, Alice can prepare qubits (like photons) in
any polarization state she pleases, and send them to Bob, who measures the
polarization along the axis of his choice. Is there any advantage to sending
qubits instead of classical bits?

In principle, if their quantum channel has perfect fidelity, and Alice and
Bob perform the preparation and measurement with perfect efficiency, then
they are no worse off using qubits instead of classical bits. Alice can prepare,
say, either | ↑z〉 or | ↓z〉, and Bob can measure along ẑ to infer the choice
she made. This way, Alice can send one classical bit with each qubit. But
in fact, that is the best she can do. Sending one qubit at a time, no matter
how she prepares it and no matter how Bob measures it, no more than one
classical bit can be carried by each qubit. (This statement is a special case
of a bound proved by Kholevo (1973) on the classical information capacity
of a quantum channel.)

But now, let’s change the rules a bit – let’s suppose that Alice and Bob
share an entangled pair of qubits in the state |φ+〉AB . The pair was prepared
last year; one qubit was shipped to Alice and the other to Bob, anticipating
that the shared entanglement would come in handy someday. Now, use of
the quantum channel is very expensive, so Alice can afford to send only one
qubit to Bob. Yet it is of the utmost importance for Alice to send Bob two
classical bits of information.

Fortunately, Alice remembers about the entangled state |φ+〉AB that she
shares with Bob, and she carries out a protocol that she and Bob had ar-
ranged for just such an emergency. On her member of the entangled pair,
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she can perform one of four possible unitary transformations:

1) 1 (she does nothing),

2) σ1 (180o rotation about x̂-axis),

3) σ2 (180o rotation about ŷ-axis),

4) σ3 (180o rotation about ẑ-axis).

As we have seen, by doing so, she transforms |φ+〉AB to one of 4 mutually
orthogonal states:

1) |φ+〉AB ,

2) |ψ+〉AB ,

3) |ψ−〉AB ,

4) |φ−〉AB .

Now, she sends her qubit to Bob, who receives it and then performs an or-
thogonal collective measurement on the pair that projects onto the maximally
entangled basis. The measurement outcome unambiguously distinguishes the
four possible actions that Alice could have performed. Therefore the single
qubit sent from Alice to Bob has successfully carried 2 bits of classical infor-
mation! Hence this procedure is called “dense coding.”

A nice feature of this protocol is that, if the message is highly confidential,
Alice need not worry that an eavesdropper will intercept the transmitted
qubit and decipher her message. The transmitted qubit has density matrix
ρA = 1

2
1A, and so carries no information at all. All the information is in

the correlations between qubits A and B, and this information is inaccessible
unless the adversary is able to obtain both members of the entangled pair.
(Of course, the adversary can “jam” the channel, preventing the information
but reaching Bob.)

From one point of view, Alice and Bob really did need to use the channel
twice to exchange two bits of information – a qubit had to be transmitted for
them to establish their entangled pair in the first place. (In effect, Alice has
merely sent to Bob two qubits chosen to be in one of the four mutually or-
thogonal entangled states.) But the first transmission could have taken place
a long time ago. The point is that when an emergency arose and two bits
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had to be sent immediately while only one use of the channel was possible,
Alice and Bob could exploit the pre-existing entanglement to communicate
more efficiently. They used entanglement as a resource.

4.2.2 EPR Quantum Key Distribution

Everyone has secrets, including Alice and Bob. Alice needs to send a highly
private message to Bob, but Alice and Bob have a very nosy friend, Eve, who
they know will try to listen in. Can they communicate with assurance that
Eve is unable to eavesdrop?

Obviously, they should use some kind of code. Trouble is, aside from
being very nosy, Eve is also very smart. Alice and Bob are not confident
that they are clever enough to devise a code that Eve cannot break.

Except there is one coding scheme that is surely unbreakable. If Alice
and Bob share a private key, a string of random bits known only to them,
then Alice can convert her message to ASCII (a string of bits no longer than
the key) add each bit of her message (module 2) to the corresponding bit of
the key, and send the result to Bob. Receiving this string, Bob adds the key
to it to extract Alice’s message.

This scheme is secure because even if Eve should intercept the transmis-
sion, she will not learn anything because the transmitted string itself carries
no information – the message is encoded in a correlation between the trans-
mitted string and the key (which Eve doesn’t know).

There is still a problem, though, because Alice and Bob need to establish
a shared random key, and they must ensure that Eve can’t know the key.
They could meet to exchange the key, but that might be impractical. They
could entrust a third party to transport the key, but what if the intermediary
is secretly in cahoots with Eve? They could use “public key” distribution
protocols, but these are not guaranteed to be secure.

Can Alice and Bob exploit quantum information (and specifically entan-
glement) to solve the key exchange problem? They can! This observation
is the basis of what is sometimes called “quantum cryptography.” But since
quantum mechanics is really used for key exchange rather than for encoding,
it is more properly called “quantum key distribution.”

Let’s suppose that Alice and Bob share a supply of entangled pairs, each
prepared in the state |ψ−〉. To establish a shared private key, they may carry
out this protocol.
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For each qubit in her/his possession, Alice and Bob decide to measure
either σ1 or σ3. The decision is pseudo-random, each choice occuring with
probability 1/2. Then, after the measurements are performed, both Alice
and Bob publicly announce what observables they measured, but do not
reveal the outcomes they obtained. For those cases (about half) in which
they measured their qubits along different axes, their results are discarded
(as Alice and Bob obtained uncorrelated outcomes). For those cases in which
they measured along the same axis, their results, though random, are perfectly
(anti-)correlated. Hence, they have established a shared random key.

But, is this protocol really invulnerable to a sneaky attack by Eve? In
particular, Eve might have clandestinely tampered with the pairs at some
time and in the past. Then the pairs that Alice and Bob possess might be
(unbeknownst to Alice and Bob) not perfect |ψ−〉’s, but rather pairs that are
entangled with qubits in Eve’s possession. Eve can then wait until Alice and
Bob make their public announcements, and proceed to measure her qubits
in a manner designed to acquire maximal information about the results that
Alice and Bob obtained. Alice and Bob must protect themselves against this
type of attack.

If Eve has indeed tampered with Alice’s and Bob’s pairs, then the most
general possible state for an AB pair and a set of E qubits has the form

|Υ〉ABE = |00〉AB |e00〉E + |01〉AB |e01〉E
+ |10〉AB |e10〉E + |11〉AB |e11〉E . (4.67)

But now recall that the defining property or |ψ−〉 is that it is an eigenstate

with eigenvalue −1 of both σ
(A)
1 σ

(B)
1 and σ

(A)
3 σ

(B)
3 . Suppose that A and B

are able to verify that the pairs in their possession have this property. To
satisfy σ

(A)
3 σ

(B)
3 = −1, we must have

|Υ〉AB = |01〉AB |e01〉E + |10〉AB |e10〉E , (4.68)

and to also satisfy σ
(A)
1 σ

(B)
1 = −1, we must have

|Υ〉ABE =
1√
2
(|01〉 − |10〉)|e〉E = |ψ−〉|e〉. (4.69)

We see that it is possible for the AB pairs to be eigenstates of σ
(A)
1 σ

(B)
1

and σ
(A)
3 σ

(B)
3 only if they are completely unentangled with Eve’s qubits.
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Therefore, Eve will not be able to learn anything about Alice’s and Bob’s
measurement results by measuring her qubits. The random key is secure.

To verify the properties σ
(A)
1 σ

(B)
1 = −1 = σ

(A)
3 σ

(B)
3 , Alice and Bob can

sacrifice a portion of their shared key, and publicly compare their measure-
ment outcomes. They should find that their results are indeed perfectly
correlated. If so they will have high statistical confidence that Eve is unable
to intercept the key. If not, they have detected Eve’s nefarious activity. They
may then discard the key, and make a fresh attempt to establish a secure
key.

As I have just presented it, the quantum key distribution protocol seems
to require entangled pairs shared by Alice and Bob, but this is not really
so. We might imagine that Alice prepares the |ψ−〉 pairs herself, and then
measures one qubit in each pair before sending the other to Bob. This is
completely equivalent to a scheme in which Alice prepares one of the four
states

| ↑z〉, | ↓z〉, | ↑x〉, | ↓x〉, (4.70)

(chosen at random, each occuring with probability 1/4) and sends the qubit
to Bob. Bob’s measurement and the verification are then carried out as
before. This scheme (known as BB84 in quantum key distribution jargon) is
just as secure as the entanglement-based scheme.3

Another intriguing variation is called the “time-reversed EPR” scheme.
Here both Alice and Bob prepare one of the four states in eq. (4.70), and
they both send their qubits to Charlie. Then Charlie performs a Bell mea-
surement on the pair, orthogonally projecting out one of |φ±〉|ψ±〉, and he
publicly announces the result. Since all four of these states are simultaneous
eigenstates of σ

(A)
1 σ

(B)
1 and σ

(A)
3 σ

(B)
3 , when Alice and Bob both prepared

their spins along the same axis (as they do about half the time) they share
a single bit.4 Of course, Charlie could be allied with Eve, but Alice and Bob
can verify that Charlie has acquired no information as before, by compar-
ing a portion of their key. This scheme has the advantage that Charlie could

3Except that in the EPR scheme, Alice and Bob can wait until just before they need to
talk to generate the key, thus reducing the risk that Eve might at some point burglarize
Alice’s safe to learn what states Alice prepared (and so infer the key).

4Until Charlie does his measurement, the states prepared by Bob and Alice are to-
tally uncorrelated. A definite correlation (or anti-correlation) is established after Charlie
performs his measurement.
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operate a central switching station by storing qubits received from many par-
ties, and then perform his Bell measurement when two of the parties request
a secure communication link. A secure key can be established even if the
quantum communication line is down temporarily, as long as both parties
had the foresight to send their qubits to Charlie on an earlier occasion (when
the quantum channel was open.)

So far, we have made the unrealistic assumption that the quantum com-
munication channel is perfect, but of course in the real world errors will
occur. Therefore even if Eve has been up to no mischief, Alice and Bob
will sometimes find that their verification test will fail. But how are they to
distinguish errors due to imperfections of the channel from errors that occur
because Eve has been eavesdropping?

To address this problem, Alice and Bob must enhance their protocol in
two ways. First they must implement (classical) error correction to reduce
the effective error rate. For example, to establish each bit of their shared
key they could actually exchange a block of three random bits. If the three
bits are not all the same, Alice can inform Bob which of the three is different
than the other two; Bob can flip that bit in his block, and then use majority
voting to determine a bit value for the block. This way, Alice and Bob share
the same key bit even if an error occured for one bit in the block of three.

However, error correction alone does not suffice to ensure that Eve has
acquired negligible information about the key – error correction must be
supplemented by (classical) privacy amplification. For example, after per-
forming error correction so that they are confident that they share the same
key, Alice and Bob might extract a bit of “superkey” as the parity of n key
bits. To know anything about the parity of n bits, Eve would need to know
something about each of the bits. Therefore, the parity bit is considerably
more secure, on the average, than each of the individual key bits.

If the error rate of the channel is low enough, one can hope to show that
quantum key distribution, supplemented by error correction and privacy am-
plification, is invulnerable to any attack that Eve might muster (in the sense
that the information acquired by Eve can be guaranteed to be arbitrarily
small). Whether this has been established is, at the moment, a matter of
controversy.
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4.2.3 No cloning

The security of quantum key distribution is based on an essential difference
between quantum information and classical information. It is not possible
to acquire information that distinguishes between nonorthogonal quantum
states without disturbing the states.

For example, in the BB84 protocol, Alice sends to Bob any one of the four
states | ↑z〉| ↓z〉| ↑x〉| ↓x〉, and Alice and Bob are able to verify that none of
their states are perturbed by Eve’s attempt at eavesdropping. Suppose, more
generally, that |ϕ〉 and |ψ〉 are two nonorthogonal states in H (〈ψ|ϕ〉 6= 0)
and that a unitary transformation U is applied to H ⊗HE (where HE is a
Hilbert space accessible to Eve) that leaves both |ψ〉 and |ϕ〉 undisturbed.
Then

U : |ψ〉 ⊗ |0〉E → |ψ〉 ⊗ |e〉E ,
|ϕ〉 ⊗ |0〉E → |ϕ〉 ⊗ |f〉E , (4.71)

and unitarity implies that

〈ψ|φ〉 = (E〈0| ⊗ 〈ψ|)(|ϕ〉 ⊗ |0〉E)

= (E〈e| ⊗ 〈ψ|)(|ϕ〉 ⊗ |f〉E)

= 〈ψ|ϕ〉E〈e|f〉E . (4.72)

Hence, for 〈ψ|ϕ〉 6= 0, we have E〈e|f〉E = 1, and therefore since the states
are normalized, |e〉 = |f〉. This means that no measurement in HE can
reveal any information that distinguishes |ψ〉 from |ϕ〉. In the BB84 case
this argument shows that the state in HE will be the same irrespective of
which of the four states | ↑z〉, | ↓z〉, | ↑x〉, | ↓x〉 is sent by Alice, and therefore
Eve learns nothing about the key shared by Alice and Bob. On the other
hand, if Alice is sending to Bob one of the two orthogonal states | ↑z〉 or | ↓z〉,
there is nothing to prevent Eve from acquiring a copy of the information (as
with classical bits).

We have noted earlier that if we have many identical copies of a qubit,
then it is possible to measure the mean value of noncommuting observables
like σ1,σ2, and σ3 to completely determine the density matrix of the qubit.
Inherent in the conclusion that nonorthogonal state cannot be distinguished
without disturbing them, then, is the implicit provision that it is not possible
to make a perfect copy of a qubit. (If we could, we would make as many copies
as we need to find 〈σ1〉, 〈σ2〉, and 〈σ3〉 to any specified accuracy.) Let’s now
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make this point explicit: there is no such thing as a perfect quantum Xerox
machine.

Orthogonal quantum states (like classical information) can be reliably
copied. For example, the unitary transformation that acts as

U : |0〉A|0〉B → |0〉A|0〉B
|1〉A|0〉B → |1〉A|1〉B , (4.73)

copies the first qubit onto the second if the first qubit is in one of the states
|0〉A or |1〉A. But if instead the first qubit is in the state |ψ〉 = a|0〉A + b|1〉A,
then

U : (a|0〉A + b|1〉A)|0〉B
→ a|0〉A|0〉B + b|1〉A|1〉B. (4.74)

Thus is not the state |ψ〉⊗|ψ〉 (a tensor product of the original and the copy);
rather it is something very different – an entangled state of the two qubits.

To consider the most general possible quantum Xerox machine, we allow
the full Hilbert space to be larger than the tensor product of the space of the
original and the space of the copy. Then the most general “copying” unitary
transformation acts as

U : |ψ〉A|0〉B |0〉E → |ψ〉A|ψ〉B|e〉E
|ϕ〉A|0〉B |0〉E → |ϕ〉A|ϕ〉B|f〉E . (4.75)

Unitarity then implies that

A〈ψ|ϕ〉A = A〈ψ|ϕ〉A B〈ψ|ϕ〉B E〈e|f〉E ; (4.76)

therefore, if 〈ψ|ϕ〉 6= 0, then

1 = 〈ψ|ϕ〉 E〈e|f〉E . (4.77)

Since the states are normalized, we conclude that

|〈ψ|ϕ〉| = 1, (4.78)

so that |ψ〉 and |ϕ〉 actually represent the same ray. No unitary machine can
make a copy of both |ϕ〉 and |ψ〉 if |ϕ〉 and |ψ〉 are distinct, nonorthogonal
states. This result is called the no-cloning theorem.
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4.2.4 Quantum teleportation

In dense coding, we saw a case where quantum information could be exploited
to enhance the transmission of classical information. Now let’s address a
closely related issue: Can we use classical information to realize transmission
of quantum information?

Alice has a qubit, but she doesn’t know it’s state. Bob needs this qubit
desperately. But that darn quantum channel is down again! Alice can send
only classical information to Bob.

She could try measuring ~σ · n̂, projecting her qubit to either | ↑n̂〉 or | ↓n̂〉.
She could send the measurement outcome to Bob who could then proceed to
prepare the state Alice found. But you showed in a homework exercise that
Bob’s qubit will not be a perfect copy of Alice’s; on the average we’ll have

F = |B〈 · |ψ〉A|2 =
2

3
, (4.79)

Thus is a better fidelity than could have been achieved (F = 1
2
) if Bob had

merely chosen a state at random, but it is not nearly as good as the fidelity
that Bob requires.

But then Alice and Bob recall that they share some entangled pairs; why
not use the entanglement as a resource? They carry out this protocol: Alice
unites the unknown qubit |ψ〉C she wants to send to Bob with her member
of a |φ+〉AB pair that she shares with Bob. On these two qubits she performs
Bell measurement, projecting onto one of the four states |φ±〉CA, |ψ±〉CA. She
sends her measurement outcome (two bits of classical information) to Bob
over the classical channel. Receiving this information, Bob performs one of
four operations on his qubit |·〉B:

|φ+〉CA → 1B

|ψ+〉CA → σ
(B)
1

|ψ−〉CA → σ
(B)
2

|φ−〉CA → σ
(B)
3 . (4.80)

This action transforms his qubit (his member of the |φ+〉AB pair that he
initially shared with Alice) into a perfect copy of |ψ〉C ! This magic trick is
called quantum teleportation.

It is a curious procedure. Initially, Bob’s qubit |·〉B is completely unentan-
gled with the unknown qubit |ψ〉C, but Alice’s Bell measurement establishes
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a correlation between A and C . The measurement outcome is in fact com-
pletely random, as you’ll see in a moment, so Alice (and Bob) actually acquire
no information at all about |ψ〉 by making this measurement.

How then does the quantum state manage to travel from Alice to Bob?
It is a bit puzzling. On the one hand, we can hardly say that the two
classical bits that were transmitted carried this information – the bits were
random. So we are tempted to say that the shared entangled pair made the
teleportation possible. But remember that the entangled pair was actually
prepared last year, long before Alice ever dreamed that she would be sending
the qubit to Bob ...

We should also note that the teleportation procedure is fully consistent
with the no-cloning theorem. True, a copy of the state |ψ〉 appeared in Bob’s
hands. But the original |ψ〉C had to be destroyed by Alice’s measurement
before the copy could be created.

How does it work? We merely note that for |ψ〉 = a|0〉 + b|1〉, we may
write

|ψ〉C|φ+〉AB = (a|0〉C + b|1〉C)
1√
2
(|00〉AB + |11〉AB)

=
1√
2
(a|000〉CAB + a|011〉CAB + b|100〉CAB + b|111〉CAB )

=
1

2
a(|φ+〉CA + |φ−〉CA)|0〉B +

1

2
a(|ψ+〉CA + |ψ−〉CA)|1〉B

+
1

2
b(|ψ+〉CA − |ψ−〉CA)|0〉B +

1

2
b(|φ+〉CA − |φ−〉CA)|1〉B

=
1

2
|φ+〉CA(a|0〉B + b|1〉B)

+
1

2
|ψ+〉CA(a|1〉B + b|0〉B)

+
1

2
|ψ−〉CA(a|1〉B − b|0〉B)

+
1

2
|φ−〉CA(a|0〉B − b|1〉B)

=
1

2
|φ+〉CA|ψ〉B +

1

2
|ψ+〉CAσ1|ψ〉B

+
1

2
|ψ−〉CA(−iσ2)|ψ〉B +

1

2
|φ−〉CAσ3|ψ〉B. (4.81)

Thus we see that when we perform the Bell measurement on qubits C and
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A, all four outcomes are equally likely, and that the actions prescribed in
Eq. (4.80) will restore Bob’s qubit to the initial state |ψ〉.


