The Shor Algorithm

1 The Motivation:

1) Generate very large primes P and Q.
2) Create $M=P Q$.
3) Now randomly generate k, such that $(k, \phi(M))=1$.
4) Find k^{-1} such that $k k^{-1}=j \phi(M)+1$.

To turn a message T, where $T<M$, into cyphertext C :
$C=T^{k} \operatorname{Mod} M$
To decrypt:
$C^{k^{-1}}=T^{k k^{-1}}=T^{j \phi(M)+1}=T^{j \phi(M)} T=T$

2 The Function:

$$
\begin{equation*}
f(x)=a^{x} \operatorname{Mod} M \tag{1}
\end{equation*}
$$

Define r as a number such that $a^{r} \operatorname{Mod} M=1$. Then if r is even, $a^{r} \operatorname{Mod} M=1$
$a^{r}-1$ Mod $M=0$
$\left(a^{\frac{r}{2}}\right)^{2}-1 \operatorname{Mod} M=0$
$\left(a^{\frac{r}{2}}+1\right)\left(a^{\frac{r}{2}}-1\right) M o d M=0$
So $\left(a^{\frac{r}{2}}+1\right)\left(a^{\frac{r}{2}}-1\right)$ is equal to some multiple of M , but neither factor alone will be a multiple of M. Therefore the gcd of either factor with M will yield one of M's two prime factors. If r is not even, then pick a new a and repeat.

3 Machine states:

$$
\begin{array}{r}
\text { [Input state] } \rightarrow|\Psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle|0\rangle \\
{\left[\text { Apply } U_{f} \text {, where } U_{f}(|x\rangle|0\rangle)=|x\rangle|f(x)\rangle\right] \rightarrow \quad|\Psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle|f(x)\rangle} \\
\text { [Measure } \left.f(x), \text { with result } f\left(x_{0}\right)\right] \rightarrow \quad|\Psi\rangle=\frac{1}{\sqrt{A}} \sum_{j=0}^{A-1}\left|x_{0}+j r\right\rangle \\
\text { [Apply QFT] } \rightarrow \quad|\Psi\rangle=\frac{1}{\sqrt{N A}} \sum_{k=0}^{N-1}\left[\sum_{j=0}^{A-1} e^{\left.-\frac{2 \pi i k}{N}\left(x_{0}+j r\right)\right]|k\rangle}\right. \\
=\frac{1}{\sqrt{N A}} \sum_{k=0}^{N-1} e^{-\frac{2 \pi i k}{N} x_{0}}\left[\sum_{j=0}^{A-1} e^{\left.-2 \pi i j \frac{k r}{N}\right]}\right]|k\rangle \tag{6}
\end{array}
$$

The probability distribution on k will tend to spike strongly where $\frac{k r}{N} \approx \mathbb{Z}$.

4 It works:

Some notes and notation:
i) $\quad A$ is the number of times that $f(x)=f\left(x_{0}\right)$, so $\left\lfloor\frac{N}{r}\right\rfloor \leq A \leq\left\lfloor\frac{N}{r}\right\rfloor+1 \leq \frac{N}{r}+1$
ii) $\theta_{k}=\frac{2 \pi k r}{N}$
iii) There are r values of k such that $-\frac{r}{2} \leq k r \operatorname{Mod} N \leq \frac{r}{2}$ or $-\frac{\pi r}{N} \leq \theta_{k} \leq \frac{\pi r}{N}$
iv) $\left|e^{i \alpha}-1\right| \leq|\alpha|$
v) $\quad \frac{2|\alpha|}{\pi} \leq\left|e^{i \alpha}-1\right| \quad($ When $|\alpha| \leq \pi)$
vi) $r \leq \frac{1}{2} \phi(M)<M \leq \sqrt{N}$

Now, for some k such that $-\frac{r}{2} \leq k r \operatorname{Mod} N \leq \frac{r}{2}$, we have $-\frac{\pi r}{N} \leq \theta_{k} \leq \frac{\pi r}{N}$ and:

$$
\begin{aligned}
& \sqrt{P(k)}=|\langle k \mid \Psi\rangle| \\
& =\frac{1}{\sqrt{N A}}\left|\sum_{s=0}^{N-1} e^{-\frac{2 \pi i s}{N} x_{0}}\left[\sum_{j=0}^{A-1} e^{-2 \pi i j \frac{s r}{N}}\right]\langle k \mid s\rangle\right| \\
& =\frac{1}{\sqrt{N A}}\left|e^{-\frac{2 \pi i k}{N} x_{0}} \sum_{j=0}^{A-1} e^{2 \pi i j \frac{k r}{N}}\right| \\
& =\frac{1}{\sqrt{N A}}\left|\sum_{j=0}^{A-1} e^{2 \pi i j \frac{k r}{N}}\right| \\
& \left(\left|e^{-\frac{2 \pi i s}{N} x_{0}}\right|=1\right) \\
& =\frac{1}{\sqrt{N A}}\left|\sum_{j=0}^{A-1} e^{i j \theta_{k}}\right| \quad\left(\theta_{k}=2 \pi \frac{k r}{N}\right) \\
& =\frac{1}{\sqrt{N A}}\left|\frac{e^{i A \theta_{k}-1}}{e^{i \theta_{k}-1}}\right| \\
& =\frac{1}{\sqrt{N A}}\left|\frac{e^{i A \theta_{k}} e^{i(A-1) \theta_{k+e} i(A-1) \theta_{k-1}}}{e^{i \theta_{k-1}}}\right| \\
& =\frac{1}{\sqrt{N A}}\left|\frac{e^{i(A-1) \theta_{k}-1}}{e^{i \theta_{k}-1}}+e^{i(A-1) \theta_{k}}\right| \\
& =\frac{1}{\sqrt{N A}}\left(\left|\frac{e^{i(A-1) \theta_{k-1}}}{e^{i \theta_{k-1}}}\right|-1\right) \\
& \geq \frac{1}{\sqrt{N A}}\left(\frac{\left|e^{i(A-1) \theta_{k}}-1\right|}{\left|\theta_{k}\right|}-1\right) \\
& \geq \frac{1}{\sqrt{N A}}\left(\frac{2(A-1)\left|\theta_{k}\right|}{\pi\left|\theta_{k}\right|}-1\right) \\
& \left(\left|e^{i \theta_{k}}-1\right| \leq\left|\theta_{k}\right|\right) \\
& =\frac{1}{\sqrt{N A}}\left(\frac{2}{\pi} A-\left(1+\frac{2}{\pi}\right)\right) \\
& \Rightarrow P(k)=\frac{1}{N A}\left(\frac{2}{\pi} A-\left(1+\frac{2}{\pi}\right)\right)^{2} \\
& =\frac{1}{N A}\left(\frac{4}{\pi^{2}} A^{2}-\frac{4}{\pi}\left(1+\frac{2}{\pi}\right) A+\left(1+\frac{2}{\pi}\right)^{2}\right) \\
& =\frac{4}{\pi^{2}} \frac{A}{N}-\frac{4}{\pi}\left(1+\frac{\pi}{\pi}\right) \frac{1}{N}+\left(1+\frac{2}{\pi}\right)^{2} \frac{1^{\pi}}{N A} \\
& \approx \frac{\pi_{4}^{2}}{\pi^{2}} \frac{1}{r}
\end{aligned}
$$

In general, there are a different solutions for b in the equation: $-\frac{a}{2} \leq a b \operatorname{Mod} M \leq \frac{a}{2}$ for any M. Therefore, for $\ell \in\{0, \ldots, r-1\}$:

$$
\begin{equation*}
P\left(\ell \frac{N}{r}-\frac{1}{2} \leq k \leq \ell \frac{N}{r}+\frac{1}{2}\right)=P\left(-\frac{r}{2} \leq k r \operatorname{Mod} N \leq \frac{r}{2}\right) \geq \frac{4}{\pi^{2}} \approx 40.5 \% \tag{8}
\end{equation*}
$$

5 Here's what you do with the results:

Looking at these values in the form:

$$
\begin{aligned}
& \frac{\ell}{r}-\frac{1}{2 N} \leq \frac{k}{N} \leq \frac{\ell}{r}+\frac{1}{2 N} \\
& \Rightarrow\left|\frac{k}{N}-\frac{\ell}{r}\right| \leq \frac{1}{2 N}
\end{aligned}
$$

This value of $\frac{\ell}{r}$ is unique. For two distinct rational numbers $\frac{a}{b}$ and $\frac{c}{d}$, with $c, d<M$, we have $\left|\frac{a}{b}-\frac{c}{d}\right|=\left|\frac{a d-b c}{b d}\right| \geq \frac{1}{M^{2}}$. So, assuming there are two solutions, $\frac{\ell^{\prime}}{r^{\prime}}, \frac{\ell}{r}$ we have:

$$
\begin{equation*}
\left|\frac{\ell^{\prime}}{r^{\prime}}-\frac{\ell}{r}\right| \leq\left|\frac{k}{N}-\frac{\ell}{r}\right|+\left|\frac{k}{N}-\frac{\ell^{\prime}}{r^{\prime}}\right| \leq \frac{1}{2 N}+\frac{1}{2 N} \leq \frac{1}{M^{2}} \tag{9}
\end{equation*}
$$

Which is impossible for $\frac{\ell^{\prime}}{r^{\prime}}, \frac{\ell}{r}$ distinct and $r, r^{\prime}<M$.

Now, find the continued fraction expansion of $\frac{k}{N}$, and take successfully longer and longer approximations until $\frac{\ell}{r}$ is found.

If $(\ell, r)=1$, then r is found. Otherwise, some fraction of r is found. However, $P((\ell, r)=1)=\frac{6}{\pi^{2}} \approx 61 \%$, which is pretty good. Also, most of the remaining 39% take the form of ℓ and r sharing 2,3 , or 5 .

6 QFT in detail:

$\omega=e^{\frac{2 \pi i}{N}}$

$$
\begin{gather*}
U_{Q F T}|k\rangle=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \omega^{j k}|j\rangle \tag{10}\\
U_{Q F T}=\frac{1}{\sqrt{N}}\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{(N-1)} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)} \\
1 & \omega^{3} & \omega^{6} & \cdots & \omega^{2(N-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{(N-1)} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)}
\end{array}\right) \tag{11}\\
\left|x_{1}, x_{2}, \ldots, x_{n}\right\rangle \mapsto \frac{1}{\sqrt{N}}\left(|0\rangle+e^{2 \pi i\left[\frac{x_{n}}{2}\right]}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i\left[\frac{x_{n}-1}{2}+\frac{x_{n}}{4}\right]}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+e^{2 \pi i\left[\frac{x_{1}}{2}+\frac{x_{2}}{4}+\cdots+\frac{x_{n}}{\left.2^{n}\right]}|1\rangle\right)}\right. \tag{12}
\end{gather*}
$$

