
1 Euclid’s algorithm

Euclid’s algorithm allows you to quickly find the greatest common denominator of any two
integers, A and B. This is written ”gcd(A,B)”. gcd(A,B) is the largest number that evenly
divides A and B. So, while ”2” divides 12 and 20, it isn’t the biggest number that does.
You’ll find that gcd(12,20) = 4.

If A and B have a common divisor (the gcd is just the biggest of these), then you can
write them as A = jG and B = kG where G is the common divisor. But notice that when
you subtract one from the other that the difference also has the same divisor.

A−B = jG− kG = (j − k)G
Therefore, gcd(A,B) = gcd(A − B,B). The reason for doing this is it gives you a

smaller number to work with. So, if you can’t look at A and B, immediately factor them,
and compare their factors, then maybe you can look at A and A−B?

Example: gcd(65,70)=?
gcd(65, 70) = gcd(65, 70− 65) = gcd(65, 5)
So, the only possible common divisors are 1 and 5. 5 divides 65, so gcd(65,70)=5. You

can double check this: 65 = 5 × 13, 70 = 2 × 5 × 7. 5 is the only shared factor, and the
gcd.

Q 1.0.1: gcd(9, 15) =?

Q 1.0.2: gcd(931, 946) =?

Q 1.0.3: gcd(836, 957) =?

Q 1.0.4: Show that 7645389 and 7635389 are relatively prime. That is, show that
gcd(7645389, 7635389) = 1.

Notice that when you say ”gcd(A,B) = gcd(A−B,B)”, you’re basically asking a new,
easier question.

Q 1.0.5: gcd(205, 101) =?

Q 1.0.6: gcd(135, 271) =?

Q 1.0.7: gcd(289, 165) =?

Q 1.0.8: gcd(21, 24, 27) =?
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Q 1.0.9: gcd(30, 24, 22) =?

Q 1.0.10: Some of these may have more than one answer depending on N :
-gcd(N,N) =?
-gcd(N,N + 1) =?
-gcd(N,N + 2) =?
-gcd(N,N + 3) =?
-gcd(N,N + 4) =?

Q 1.0.11: gcd(3N + 1, 3N + 4) =?

Q 1.0.12: What can you say about gcd(N,N + P ) if N is:
-Greater than P?
-Equal to P?
-Less than P?

Q 1.0.13: gcd(2N,N + P ) =?, where P is a prime number such that 2 < P < N .

Q 1.0.14: For different N , 3N + 1 generates the sequence {1, 4, 7, 10, · · ·}. Find two
numbers in the sequence with a gcd of: 4, 13

Q 1.0.15: Without multiplying out, find gcd(213253, 233251). Consider the definition
of gcd.

Q 1.0.16: gcd(721147, 317567113) =?

Q 1.0.17: gcd(235178, 5271133) =?

Q 1.0.18: gcd(213251116, 213052711173) =?

Q 1.0.19: Any positive integer can be written as powers of primes, (2e2)(3e3)(5e5) · · ·.
For example, 84 = 223171 and e2 = 2, e3 = 1, e5 = 0, e7 = 1, e11 = 0, and so on.

Define N = (2e2)(3e3)(5e5) · · · and M = (2f2)(3f3)(5f5) · · ·.
-In terms of e’s and f ’s, what is gcd(N,M)? If you don’t know how to describe this

algebraically, describe it in words.

The ”least common multiple” of A and B, written ”lcm(A,B)”, is the smallest number
that is a multiple of both A and B. For example, lcm(6, 9) = 18.

You’re probably used to this from finding the least common denominator when adding
or subtracting fractions. For example; 5

6 + 2
9 = 15

18 + 4
18 = 19

18 .
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One of the important properties of the lcm(A,B) is that any factor that either A or B
have is found in lcm(A,B).

Q 1.0.20: Without multiplying out, find lcm(235178, 5271133). Consider the definition
of lcm.

Q 1.0.21: Same idea: lcm(213251116, 213052711173) =?.

Q 1.0.22:
Again, define N = (2e2)(3e3)(5e5) · · · and M = (2f2)(3f3)(5f5) · · ·.
-In terms of e’s and f ’s, what is lcm(N,M), the ”least common multiple of N and M”?
-[gcd(N,M)] [lcm(N,M)] =?
-Write a quick algorithm for finding lcm(A,B). ”Find the gcd” is a valid step.

1.1 The algorithm

You may have already noticed that it’s quicker to divide than subtract. For example, say
you want to find gcd(126, 30).

You can subtract several times:
gcd(126, 30) = gcd(96, 30) = gcd(66, 30) = gcd(36, 30) = gcd(6, 30)
Or you can say ”I’ll just remove all the 30’s”:
gcd(126, 30) = gcd(4 · 30 + 6, 30) = gcd(6, 30)
Notice that the quick way to find that 4 (the number of times that 30 goes into 126)

is to divide. That 6 is the remainder. The following example solves the same problem the
same way, just one way is faster.

Using subtraction Using the remainder
gcd(126, 30) gcd(126, 30)
= gcd(96, 30) = gcd(6, 30) 126 = 4 · 30 + 6
= gcd(66, 30) = gcd(6, 0) 30 = 5 · 6 + 0
= gcd(36, 30) = 6
= gcd(6, 30)
= gcd(6, 24)
= gcd(6, 18)
= gcd(6, 12)
= gcd(6, 6)
= gcd(6, 0)

= 6
As a matter of mathematical convenience, gcd(0, x) = x by definition. This is so that

we can say, in general, that gcd(A,B) = gcd(A−B,B). So, gcd(x, x) = gcd(0, x) = x.

3



Using subtraction Using the remainder
gcd(53, 116) gcd(53, 116)
= gcd(53, 63) = gcd(53, 10) 116 = 2 · 53 + 10
= gcd(53, 10) = gcd(3, 10) 53 = 5 · 10 + 3
= gcd(43, 10) = gcd(3, 1) 10 = 3 · 3 + 1
= gcd(33, 10) = gcd(0, 1) 3 = 3 · 1 + 0
= gcd(23, 10) = 1
= gcd(13, 10)
= gcd(3, 10)
= gcd(3, 7)
= gcd(3, 4)
= gcd(3, 1)
= gcd(2, 1)
= gcd(1, 1)
= gcd(0, 1)

= 1

The Algorithm
You want to find gcd(A,B). Without loss of generalization, assume that A > B.
1) Start a list with A then B. Define A = r1 and B = r2.
2) To get rn+1, subtract rn from rn−1 over and over until you get a number smaller

than rn. This new number is rn+1. That is, rn+1 = rn−1 − jrn for some j. A simpler way
to say this is: rn+1 is the remainder of rn−1 ÷ rn.

3) If rn+1 isn’t zero, then go to step two. If it is zero, then the last non-zero number is
the gcd.

Example: gcd(20, 12) =?
r1 = 20
r2 = 12
r3 = 8 20 = 1 · 12 + 8
r4 = 4 12 = 1 · 8 + 4
r5 = 0 8 = 2 · 4 + 0

So, gcd(12,20) = 4.

Example: gcd(531, 702) =?
r1 = 702
r2 = 531
r3 = 171
r4 = 18 531 = 3 · 171 + 18
r5 = 9 171 = 9 · 18 + 9
r6 = 0
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Q 1.1.1: gcd(52584, 87452) =?

Q 1.1.2: gcd(15646, 5124) =?

Q 1.1.3: gcd(0.4, 3) =?

Q 1.1.4: gcd(
√

18,
√

8) =?
Hint: Simplify the radicals first.

Q 1.1.5: gcd(3,
√

2) =?
Hint: Use a calculator. This is a kinda a trick question.

Q 1.1.6: gcd(Fn, Fn+1) =?, where Fn and Fn+1 are consecutive Fibonacci numbers.

Q 1.1.7: gcd(Fn, Fn+2) =?

Q 1.1.8: gcd(Fn, Fn+3) =?

Q 1.1.9: Qualitatively, why is gcd(93, 15) quick to find and gcd(93, 57) slow to find,
using the algorithm?

Q 1.1.10: Clearly, on average, Euclid’s algorithm should take longer the larger A and
B are. After all, if A and B are both small it can’t take too many steps.

-Does Euclid’s algorithm work slowest if A and B are nearly equal, one is much smaller
than the other, or somewhere in between?

-Can you construct a worst-case scenario? That is, how would you find a pair of fairly
small numbers with the maximum possible number of steps?

Q 1.1.11: Using your answer to the last question, for a given N , what is the maximum
number of steps you need to take if A,B < N?

1.2 proof!

In a nutshell; every step in the algorithm produces a new number that is smaller and retains
all of the divisors common to both A and B. So, the last number it can produce is the
gcd, since the gcd(A,B) is by definition the smallest number with all the common divisors
of A and B. The more rigorous proof isn’t necessary to use Euclid’s algorithm, but it is a
good exercise.

For any pair of numbers, x and q, you can find unique numbers j and r, such that
x = jq + r where r < q. For example, with x = 14 and q = 5, you’ll find 14 = 2 · 5 + 4.
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Assume B < A, and set A = r1 and B = r2. Then A = j3B + r3 for some j3 and
r3. In the algorithm, r3 is the first new number generated. In turn, B = j4r3 + r4.
Continuing the algorithm creates a string of numbers, r1, r2, · · · , rn−1, rn where rn = 0 and
rn−1 = gcd(A,B). This needs an example: gcd(702, 531).

string of numbers as equations original
r1 = 702
r2 = 531
r3 = 171 r1 = 1 · r2 + r3 702 = 1 · 531 + 171
r4 = 18 r2 = 3 · r3 + r4 531 = 3 · 171 + 18
r5 = 9 r3 = 9 · r4 + r5 171 = 9 · 18 + 9
r6 = 0 r4 = 2 · r5 + r6 18 = 2 · 9 + 0

So, r4 = 0 and r3 = 9, which is the gcd of 702 and 531. The fact that n=6 is completely
unimportant. Also, in general the values of the j’s can also be ignored.

Step1 : Say d|A, d|B (this says ”d divides A” and ”d divides B”). We know that
A = j3B + r3, so A− j3B = r3. But since d divides all of the left side it must divide all of
the right side. So d|r3. In the next step of the algorithm, B = j4r3 + r4. Doing the same
thing, B − j4r3 = r4, and we find that d|r4. Doing the same thing over and over we find
that d divides all the r’s, including rn−1. Now since d can be any divisor of both A and
B, including gcd(A,B). Therefore, since d divides rn−1, it can’t be larger than rn−1, so we
know that gcd(A,B) ≤ rn−1.

Step2 : This is where the fact that rn = 0 becomes important. The last step of the
algorithm looks like rn−2 = jnrn−1 + rn. But rn = 0, so rn−2 = jnrn−1. But this is just
another way of saying that rn−1|rn−2. That is, since rn−2 is equal to rn−1 times some
number, then by definition rn−1 is a divisor of rn−2. In turn, rn−3 = jn−1rn−2 + rn−1 =
jn−1 (jnrn−1)+rn−1 = (jn−1jn+1)rn−1. We don’t know what (jn−1jn+1) is, but it doesn’t
matter. What does matter is that rn−1|rn−3. Repeating the same trick you can continue
along inductively and find that rn−1|rn−4 and rn−1|rn−5 and rn−1|rn−6 and · · · and rn−1|r3
and rn−1|B and rn−1|A. Now, since rn−1 divides both A and B, then by definition it
divides gcd(A,B). But that means that rn−1 ≤ gcd(A,B).

Step3 : In step 1 we found that rn−1 ≥ gcd(A,B), and in step 2 we found that rn−1 ≤
gcd(A,B). Therefore, rn−1 = gcd(A,B). That is, when using Euclid’s algorithm, the last
non-zero term you get must be the gcd. �
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1.3 Linear Diophantine Equations

A linear diophantine equation is an equation of the form xA+ yB = d where A, B, and d
are constant integers. For example, 2x+ 5y = 3.

Solving a Diophantine equation means finding integer values for x and y that satisfy
the equation.

Example: Find a solution to 4x+ 6y = 2
x = −1 and y = 1

Q 1.3.1: Find a solution to 5x+ 3y = 9.

Q 1.3.2: Find a solution to 6x+ 8y = 10.

Q 1.3.3: Find a solution to 6x+ 8y = 9.

Q 1.3.4: Find a solution to 15x+ 6y = 24.

Q 1.3.5: Find a solution to 12x+ 15y = 10.

Q 1.3.6: Find a solution to 30x+ 45y = 60.

Q 1.3.7: Find a solution to 30x+ 45y = 70.

Note that in order for there to be solutions, d must be a multiple of gcd(A,B).

Q 1.3.8: For a given Diophantine equation of the form xA + yB = d, where x and y
are integer solutions:

-Show that if s | A and s | B, then s | d.
-Show that gcd(A,B) | d

The expression ”xA + yB” is called a ”linear combination of A and B”. So, since
d = xA + yB, the last question was really a proof that if s | A and s | B, then s divides
any linear combination of A and B (with integer coefficients, x and y).

Every step in Euclid’s algorithm produces a new number, rk, that’s just a linear com-
bination of rk−1 and rk−2. But both of those numbers are linear combinations of earlier
numbers, which are linear combinations of earlier numbers, and so on. As a result, every
rk is some linear combination of A and B (r1 and r2). So the gcd(A,B) itself is some linear
combination of A and B. By using Euclid’s algorithm, and carefully keeping track of how
many A’s and B’s there are, you can quickly find solutions to Diophantine equations of
the form xA+ yB = gcd(A,B).
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Q 1.3.9: Show that a linear combination of a linear combination of A and B is a linear
combination of A and B.

Example: Find a solution to 18x+ 39y = 3.
A = 39, B = 18
r1 = 39 r1 = 1A+ 0B
r2 = 18 r2 = 0A+ 1B
r3 = 3 r3 = r1 − 2 · r2 r3 = 1A− 2B
r4 = 0 r4 = r2 − 6 · r3

So, 18 · (−2) + 39 · 1 = 3, and therefore x = −2, and y = 1.

Example: Find a solution to 703x+ 540y = 1.
A = 703, B = 540
r1 = 703 r1 = 1A+ 0B
r2 = 540 r2 = 0A+ 1B
r3 = 163 r3 = r1 − 1 · r2 r3 = 1A− 1B
r4 = 51 r4 = r2 − 3 · r3 r4 = −3A+ 4B
r5 = 10 r5 = r3 − 3 · r4 r5 = 10A− 13B
r6 = 1 r6 = r4 − 5 · r5 r6 = −53A+ 69B
r7 = 0 r7 = r5 − 10 · r6

So, 703 · (−53) + 540 · 69 = 1, and therefore x = −53, and y = 69.

To find answers to more general Diophantine equations of the form xA+yB = d, where
d is a multiple of gcd(A,B), you just multiply by the appropriate amount. In the case in
which d is not a multiple of gcd(A,B) there are no solutions at all.

Example: Find a solution to 39x+ 22y = 5.
A = 39, B = 22
r1 = 39 r1 = 1A+ 0B
r2 = 22 r2 = 0A+ 1B
r3 = 17 r3 = r1 − 1 · r2 r3 = 1A− 1B
r4 = 5 r4 = r2 − 1 · r3 r4 = −1A+ 2B
r5 = 2 r5 = r3 − 3 · r4 r5 = 4A− 7B
r6 = 1 r6 = r4 − 2 · r5 r6 = −9A+ 16B
r7 = 0 r7 = r5 − 2 · r6

So, 39 · (−9) + 22 · 16 = 1. Multiplying both sides by 5 we get, 39 · (−45) + 22 · 80 = 5,
and therefore x = −45, and y = 80.

Q 1.3.10: 374x+ 231y = 11, ind a solution for x and y.

Q 1.3.11: 6x+ 45y = 3, find a solution for x and y.
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Q 1.3.12: 213x+ 744y = 3, solve for x and y.

Q 1.3.13: 32x+ 39y = 6, solve for x and y.

Q 1.3.14: In general, what is the solution to Ax+By = d, when d = 0, for a given A
and B?

Q 1.3.15: If (for a given A, B, and d) Ax + By = d has a solution, is that solution
unique? If not, how would you construct new solutions?
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1.4 Hodgepodge of questions

Q 1.4.1: A > B, gcd(A,B) = 1, and 2 | A or 2 | B, both not both.
Show that gcd(A+B,A−B) = 1

Q 1.4.2: Show that any fraction of the form 21N+4
14N+3 is already in lowest terms.

Q 1.4.3: gcd(7! + 4!, 5!) =?

Q 1.4.4: gcd((N + 3)! +N !, (N + 1)!) =?

Q 1.4.5: gcd(N ! +M !,K!) =?

Q 1.4.6: -Find a solution for 6x+ 5y = 7.
-Setting S as your solution for x, and T as your solution for y, what do Q and R have

to be in order for x = kQ+ S, y = kR+ T to be solutions for all values of k?

Q 1.4.7: Show that Fm+n is a linear combination of Fn and Fm, where the F ’s are
Fibonacci numbers.

Q 1.4.8: Show that Fn | Fkn for any integer k.

Q 1.4.9: Show that gcd(Fn, Fm) = Fgcd(n,m). This means that, for example, gcd(F3, F6) =
gcd(2, 8) = 2 = F3 = Fgcd(3,6)

Q 1.4.10: -Describe how you would extend the Euclid’s algorithm technique for solving
Diophantine equations of the form ”d = xA + yB”, to solving Diophantine equations of
the form ”d = xA+ yB + zC”.

-When are there no solutions to this new kind of equation?
-How would you generate new solutions?
-Use your technique to find a solution for 3x− 14y + 2z = 5, where xyz 6= 0.

Q 1.4.11: Show that if gcd(A,B) = 1, then:
-The smallest value of k for which kA

B is an integer is k = B.

-The remainder of kA
B is different for every value of k for k = 1, 2, 3, · · · , B.

”bxc” means the ”take the integer part of x”, so bπc = b3.5c = b3c = b3.9999999c = 3.

Q 1.4.12: Prove that if gcd(A,B) = 1, then

bAB c+ b2AB c+ b3AB c+ · · ·+ b (B−1)A
B c = 1

2(A− 1)(B − 1)
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