1 Euclid’s algorithm

Euclid’s algorithm allows you to quickly find the greatest common denominator of any two integers, A and B. This is written "gcd(A,B)". gcd(A,B) is the largest number that evenly divides A and B. So, while "2" divides 12 and 20, it isn't the biggest number that does. You'll find that gcd(12,20) = 4.

If A and B have a common divisor (the gcd is just the biggest of these), then you can write them as A = jG and B = kG where G is the common divisor. But notice that when you subtract one from the other that the difference also has the same divisor.

\[A - B = jG - kG = (j - k)G \]

Therefore, \(gcd(A, B) = gcd(A - B, B) \). The reason for doing this is it gives you a smaller number to work with. So, if you can’t look at A and B, immediately factor them, and compare their factors, then maybe you can look at A and A - B?

Example: gcd(65,70)=?

\[
gcd(65, 70) = gcd(65, 70 - 65) = gcd(65, 5)
\]

So, the only possible common divisors are 1 and 5. 5 divides 65, so gcd(65,70)=5. You can double check this: 65 = 5 \times 13, 70 = 2 \times 5 \times 7. 5 is the only shared factor, and the gcd.

Q 1.0.1: gcd(9,15) =?

Q 1.0.2: gcd(931,946) =?

Q 1.0.3: gcd(836,957) =?

Q 1.0.4: Show that 7645389 and 7635389 are relatively prime. That is, show that gcd(7645389, 7635389) = 1.

Notice that when you say "gcd(A, B) = gcd(A - B, B)", you’re basically asking a new, easier question.

Q 1.0.5: gcd(205,101) =?

Q 1.0.6: gcd(135,271) =?

Q 1.0.7: gcd(289,165) =?

Q 1.0.8: gcd(21,24,27) =?
Q 1.0.9: \(\gcd(30, 24, 22) = ? \)

Q 1.0.10: Some of these may have more than one answer depending on \(N \):
- \(\gcd(N, N) = ? \)
- \(\gcd(N, N + 1) = ? \)
- \(\gcd(N, N + 2) = ? \)
- \(\gcd(N, N + 3) = ? \)
- \(\gcd(N, N + 4) = ? \)

Q 1.0.11: \(\gcd(3N + 1, 3N + 4) = ? \)

Q 1.0.12: What can you say about \(\gcd(N, N + P) \) if \(N \) is:
- Greater than \(P \)?
- Equal to \(P \)?
- Less than \(P \)?

Q 1.0.13: \(\gcd(2N, N + P) = ? \), where \(P \) is a prime number such that \(2 < P < N \).

Q 1.0.14: For different \(N \), \(3N + 1 \) generates the sequence \(\{1, 4, 7, 10, \ldots \} \). Find two numbers in the sequence with a \(\gcd \) of: 4, 13

Q 1.0.15: Without multiplying out, find \(\gcd(2^13^25^3, 2^33^25^1) \). Consider the definition of \(\gcd \).

Q 1.0.16: \(\gcd(7^211^{47}, 3^17^667^{11^3}) = ? \)

Q 1.0.17: \(\gcd(2^35^17^8, 5^27^13^3) = ? \)

Q 1.0.18: \(\gcd(2^13^25^111^6, 2^13^05^27^111^{73}) = ? \)

Q 1.0.19: Any positive integer can be written as powers of primes, \((2^{e_2})(3^{e_3})(5^{e_5}) \cdots \). For example, \(84 = 2^23^17^1 \) and \(e_2 = 2, e_3 = 1, e_5 = 0, e_7 = 1, e_{11} = 0 \), and so on.

Define \(N = (2^{e_2})(3^{e_3})(5^{e_5}) \cdots \) and \(M = (2^{f_2})(3^{f_3})(5^{f_5}) \cdots \).

- In terms of \(e \)'s and \(f \)'s, what is \(\gcd(N, M) \)? If you don’t know how to describe this algebraically, describe it in words.

The "least common multiple" of \(A \) and \(B \), written "\(\text{lcm}(A, B) \)" , is the smallest number that is a multiple of both \(A \) and \(B \). For example, \(\text{lcm}(6, 9) = 18 \).

You’re probably used to this from finding the least common denominator when adding or subtracting fractions. For example; \(\frac{5}{6} + \frac{2}{9} = \frac{15}{18} + \frac{4}{18} = \frac{19}{18} \).
One of the important properties of the \(\text{lcm}(A, B) \) is that any factor that either \(A \) or \(B \) have is found in \(\text{lcm}(A, B) \).

Q 1.0.20: Without multiplying out, find \(\text{lcm}(2^35^17^8, 5^27^113^3) \). Consider the definition of lcm.

Q 1.0.21: Same idea: \(\text{lcm}(2^13^25^111^6, 2^13^05^27^111^73) = ? \).

Q 1.0.22:
Again, define \(N = (2^e_2)(3^e_3)(5^e_5) \cdots \) and \(M = (2^f_2)(3^f_3)(5^f_5) \cdots \).
- In terms of \(e \)'s and \(f \)'s, what is \(\text{lcm}(N, M) \), the "least common multiple of \(N \) and \(M \)?
- \(\text{[gcd}(N, M)] \text{lcm}(N, M) = ? \)
- Write a quick algorithm for finding \(\text{lcm}(A, B) \). "Find the gcd" is a valid step.

1.1 The algorithm

You may have already noticed that it’s quicker to divide than subtract. For example, say you want to find \(\text{gcd}(126, 30) \).

You can subtract several times:
\[
\begin{align*}
gcd(126, 30) &= \gcd(96, 30) = \gcd(66, 30) = \gcd(36, 30) = \gcd(6, 30) \\
&= \gcd(4 \cdot 30 + 6, 30) = \gcd(6, 30)
\end{align*}
\]

Or you can say "I’ll just remove all the 30's":
\[
\begin{align*}
gcd(126, 30) &= \gcd(4 \cdot 30 + 6, 30) = \gcd(6, 30)
\end{align*}
\]

Notice that the quick way to find that 4 (the number of times that 30 goes into 126) is to divide. That 6 is the remainder. The following example solves the same problem the same way, just one way is faster.

Using subtraction Using the remainder
\[
\begin{align*}
gcd(126, 30) &= gcd(96, 30) = gcd(66, 30) = gcd(36, 30) = gcd(6, 30) \\
&= gcd(96, 30) = gcd(66, 30) = gcd(36, 30) = gcd(6, 30) \\
&= gcd(6, 30) = gcd(6, 24) \\
&= gcd(6, 18) \\
&= gcd(6, 12) \\
&= gcd(6, 6) \\
&= gcd(6, 0) \\
&= 6
\end{align*}
\]

As a matter of mathematical convenience, \(\text{gcd}(0, x) = x \) by **definition**. This is so that we can say, in general, that \(\text{gcd}(A, B) = \text{gcd}(A - B, B) \). So, \(\text{gcd}(x, x) = \text{gcd}(0, x) = x \).
Using subtraction Using the remainder
\[
gcd(53, 116) \quad gcd(53, 116)
\]
\[
gcd(53, 116) = gcd(53, 63) = gcd(53, 10) = 116 = 2 \cdot 53 + 10
\]
\[
gcd(53, 116) = gcd(53, 10) = gcd(3, 10) = 53 = 5 \cdot 10 + 3
\]
\[
gcd(53, 116) = gcd(43, 10) = gcd(3, 1) = 10 = 3 \cdot 3 + 1
\]
\[
gcd(53, 116) = gcd(33, 10) = gcd(3, 1) = 3 = 3 \cdot 1 + 0
\]
\[
gcd(53, 116) = gcd(23, 10) = 3 = 3 \cdot 1 + 0
\]
\[
gcd(53, 116) = gcd(13, 10) = 3 = 3 \cdot 1 + 0
\]
\[
gcd(53, 116) = gcd(3, 10) = 3 = 3 \cdot 1 + 0
\]
\[
gcd(53, 116) = gcd(3, 7) = 3 = 3 \cdot 1 + 0
\]
\[
gcd(53, 116) = gcd(3, 4) = 3 = 3 \cdot 1 + 0
\]
\[
gcd(53, 116) = gcd(3, 1) = 3 = 3 \cdot 1 + 0
\]
\[
gcd(53, 116) = gcd(2, 1) = 3 = 3 \cdot 1 + 0
\]
\[
gcd(53, 116) = gcd(1, 1) = 3 = 3 \cdot 1 + 0
\]
\[
gcd(53, 116) = gcd(0, 1) = 3 = 3 \cdot 1 + 0
\]
\[
gcd(53, 116) = 1 = 3 \cdot 1 + 0
\]

The Algorithm
You want to find \(gcd(A, B)\). Without loss of generalization, assume that \(A > B\).
1) Start a list with \(A\) then \(B\). Define \(A = r_1\) and \(B = r_2\).
2) To get \(r_{n+1}\), subtract \(r_n\) from \(r_{n-1}\) over and over until you get a number smaller than \(r_n\). This new number is \(r_{n+1}\). That is, \(r_{n+1} = r_{n-1} - j r_n\) for some \(j\). A simpler way to say this is: \(r_{n+1}\) is the remainder of \(r_{n-1} \div r_n\).
3) If \(r_{n+1}\) isn’t zero, then go to step two. If it is zero, then the last non-zero number is the gcd.

Example: \(gcd(20, 12) =?\)
\[
r_1 = 20
r_2 = 12
r_3 = 8 \quad 20 = 1 \cdot 12 + 8
r_4 = 4 \quad 12 = 1 \cdot 8 + 4
r_5 = 0 \quad 8 = 2 \cdot 4 + 0
\]
So, \(gcd(12, 20) = 4\).

Example: \(gcd(531, 702) =?\)
\[
r_1 = 702
r_2 = 531
r_3 = 171
r_4 = 18 \quad 531 = 3 \cdot 171 + 18
r_5 = 9 \quad 171 = 9 \cdot 18 + 9
r_6 = 0
\]
Q 1.1.1: \(\text{gcd}(52584, 87452) =? \)

Q 1.1.2: \(\text{gcd}(15646, 5124) =? \)

Q 1.1.3: \(\text{gcd}(0.4, 3) =? \)

Q 1.1.4: \(\text{gcd}(\sqrt{18}, \sqrt{8}) =? \)
Hint: Simplify the radicals first.

Q 1.1.5: \(\text{gcd}(3, \sqrt{2}) =? \)
Hint: Use a calculator. This is a kinda a trick question.

Q 1.1.6: \(\text{gcd}(F_n, F_{n+1}) =? \), where \(F_n \) and \(F_{n+1} \) are consecutive Fibonacci numbers.

Q 1.1.7: \(\text{gcd}(F_n, F_{n+2}) =? \)

Q 1.1.8: \(\text{gcd}(F_n, F_{n+3}) =? \)

Q 1.1.9: Qualitatively, why is \(\text{gcd}(93, 15) \) quick to find and \(\text{gcd}(93, 57) \) slow to find, using the algorithm?

Q 1.1.10: Clearly, on average, Euclid’s algorithm should take longer the larger \(A \) and \(B \) are. After all, if \(A \) and \(B \) are both small it can’t take too many steps.

- Does Euclid’s algorithm work slowest if \(A \) and \(B \) are nearly equal, one is much smaller than the other, or somewhere in between?

- Can you construct a worst-case scenario? That is, how would you find a pair of fairly small numbers with the maximum possible number of steps?

Q 1.1.11: Using your answer to the last question, for a given \(N \), what is the maximum number of steps you need to take if \(A, B < N \)?

1.2 proof!

In a nutshell; every step in the algorithm produces a new number that is smaller and retains all of the divisors common to both \(A \) and \(B \). So, the last number it can produce is the gcd, since the \(\text{gcd}(A,B) \) is by definition the smallest number with all the common divisors of \(A \) and \(B \). The more rigorous proof isn’t necessary to use Euclid’s algorithm, but it is a good exercise.

For any pair of numbers, \(x \) and \(q \), you can find unique numbers \(j \) and \(r \), such that \(x = jq + r \) where \(r < q \). For example, with \(x = 14 \) and \(q = 5 \), you’ll find \(14 = 2 \cdot 5 + 4 \).
Assume $B < A$, and set $A = r_1$ and $B = r_2$. Then $A = j_3B + r_3$ for some j_3 and r_3. In the algorithm, r_3 is the first new number generated. In turn, $B = j_4r_3 + r_4$. Continuing the algorithm creates a string of numbers, $r_1, r_2, \cdots, r_{n-1}, r_n$ where $r_n = 0$ and $r_{n-1} = \gcd(A, B)$. This needs an example: $\gcd(702, 531)$.

<table>
<thead>
<tr>
<th>string of numbers</th>
<th>as equations</th>
<th>original</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r_1 = 702$</td>
<td>$r_1 = 1 \cdot r_2 + r_3$</td>
<td>$702 = 1 \cdot 531 + 171$</td>
</tr>
<tr>
<td>$r_2 = 531$</td>
<td>$r_2 = 3 \cdot r_3 + r_4$</td>
<td>$531 = 3 \cdot 171 + 18$</td>
</tr>
<tr>
<td>$r_3 = 171$</td>
<td>$r_3 = 9 \cdot r_4 + r_5$</td>
<td>$171 = 9 \cdot 18 + 9$</td>
</tr>
<tr>
<td>$r_4 = 18$</td>
<td>$r_4 = 2 \cdot r_5 + r_6$</td>
<td>$18 = 2 \cdot 9 + 0$</td>
</tr>
</tbody>
</table>

So, $r_4 = 0$ and $r_3 = 9$, which is the gcd of 702 and 531. The fact that $n=6$ is completely unimportant. Also, in general the values of the j's can also be ignored.

Step 1: Say $d | A$, $d | B$ (this says "d divides A" and "d divides B"). We know that $A = j_3B + r_3$, so $A - j_3B = r_3$. But since d divides all of the left side it must divide all of the right side. So $d | r_3$. In the next step of the algorithm, $B = j_4r_3 + r_4$. Doing the same thing, $B - j_4r_3 = r_4$, and we find that $d | r_4$. Doing the same thing over and over we find that d divides all the r's, including r_{n-1}. Now since d can be any divisor of both A and B, including $\gcd(A, B)$. Therefore, since d divides r_{n-1}, it can’t be larger than r_{n-1}, so we know that $\gcd(A, B) \leq r_{n-1}$.

Step 2: This is where the fact that $r_n = 0$ becomes important. The last step of the algorithm looks like $r_{n-2} = j_n r_{n-1} + r_n$. But $r_n = 0$, so $r_{n-2} = j_n r_{n-1}$. But this is just another way of saying that $r_{n-3} = j_{n-1} r_{n-2}$. That is, since r_{n-2} is equal to r_{n-1} times some number, then by definition r_{n-1} is a divisor of r_{n-2}. In turn, $r_{n-3} = j_{n-1} r_{n-2} + r_{n-1} = j_{n-1} (j_n r_{n-1}) + r_{n-1} = (j_{n-1}j_n + 1)r_{n-1}$. We don’t know what $(j_{n-1}j_n + 1)$ is, but it doesn’t matter. What does matter is that $r_{n-1} | r_{n-3}$. Repeating the same trick you can continue along *inductively* and find that $r_{n-1} | r_{n-4}$ and $r_{n-1} | r_{n-5}$ and $r_{n-1} | r_{n-6}$ and \cdots and $r_{n-1} | r_3$ and $r_{n-1} | B$ and $r_{n-1} | A$. Now, since r_{n-1} divides both A and B, then by definition it divides $\gcd(A, B)$. But that means that $r_{n-1} \leq \gcd(A, B)$.

Step 3: In step 1 we found that $r_{n-1} \geq \gcd(A, B)$, and in step 2 we found that $r_{n-1} \leq \gcd(A, B)$. Therefore, $r_{n-1} = \gcd(A, B)$. That is, when using Euclid’s algorithm, the last non-zero term you get must be the gcd.

1.3 Linear Diophantine Equations

A linear diophantine equation is an equation of the form $xA + yB = d$ where A, B, and d are constant integers. For example, $2x + 5y = 3$.

Solving a Diophantine equation means finding integer values for x and y that satisfy the equation.

Example: Find a solution to $4x + 6y = 2$

$x = -1$ and $y = 1$

Q 1.3.1: Find a solution to $5x + 3y = 9$.

Q 1.3.2: Find a solution to $6x + 8y = 10$.

Q 1.3.3: Find a solution to $6x + 8y = 9$.

Q 1.3.4: Find a solution to $15x + 6y = 24$.

Q 1.3.5: Find a solution to $12x + 15y = 10$.

Q 1.3.6: Find a solution to $30x + 45y = 60$.

Q 1.3.7: Find a solution to $30x + 45y = 70$.

Note that in order for there to be solutions, d must be a multiple of $gcd(A, B)$.

Q 1.3.8: For a given Diophantine equation of the form $xA + yB = d$, where x and y are integer solutions:
- Show that if $s | A$ and $s | B$, then $s | d$.
- Show that $gcd(A, B) | d$

The expression "$xA + yB$" is called a "linear combination of A and $B". So, since $d = xA + yB$, the last question was really a proof that if $s | A$ and $s | B$, then s divides any linear combination of A and B (with integer coefficients, x and y).

Every step in Euclid’s algorithm produces a new number, r_k, that’s just a linear combination of $r_{k−1}$ and $r_{k−2}$. But both of those numbers are linear combinations of earlier numbers, which are linear combinations of earlier numbers, and so on. As a result, every r_k is some linear combination of A and B (r_1 and r_2). So the $gcd(A, B)$ itself is some linear combination of A and B. By using Euclid’s algorithm, and carefully keeping track of how many A’s and B’s there are, you can quickly find solutions to Diophantine equations of the form $xA + yB = gcd(A, B)$.

7
Q 1.3.9: Show that a linear combination of a linear combination of \(A \) and \(B \) is a linear combination of \(A \) and \(B \).

Example: Find a solution to \(18x + 39y = 3 \).

\[
\begin{align*}
A &= 39, \quad B = 18 \\
r_1 &= 39, \quad r_1 = 1A + 0B \\
r_2 &= 18, \quad r_2 = 0A + 1B \\
r_3 &= 3, \quad r_3 = r_1 - 2 \cdot r_2, \quad r_3 = 1A - 2B \\
r_4 &= 0, \quad r_4 = r_2 - 6 \cdot r_3 \\
\end{align*}
\]

So, \(18 \cdot (-2) + 39 \cdot 1 = 3 \), and therefore \(x = -2 \), and \(y = 1 \).

Example: Find a solution to \(703x + 540y = 1 \).

\[
\begin{align*}
A &= 703, \quad B = 540 \\
r_1 &= 703, \quad r_1 = 1A + 0B \\
r_2 &= 540, \quad r_2 = 0A + 1B \\
r_3 &= 163, \quad r_3 = r_1 - 1 \cdot r_2, \quad r_3 = 1A - 1B \\
r_4 &= 51, \quad r_4 = r_2 - 3 \cdot r_3, \quad r_4 = -3A + 4B \\
r_5 &= 10, \quad r_5 = r_3 - 3 \cdot r_4, \quad r_5 = 10A - 13B \\
r_6 &= 1, \quad r_6 = r_4 - 5 \cdot r_5, \quad r_6 = -53A + 69B \\
r_7 &= 0, \quad r_7 = r_5 - 10 \cdot r_6 \\
\end{align*}
\]

So, \(703 \cdot (-53) + 540 \cdot 69 = 1 \), and therefore \(x = -53 \), and \(y = 69 \).

To find answers to more general Diophantine equations of the form \(xA + yB = d \), where \(d \) is a multiple of \(\text{gcd}(A,B) \), you just multiply by the appropriate amount. In the case in which \(d \) is not a multiple of \(\text{gcd}(A,B) \) there are no solutions at all.

Example: Find a solution to \(39x + 22y = 5 \).

\[
\begin{align*}
A &= 39, \quad B = 22 \\
r_1 &= 39, \quad r_1 = 1A + 0B \\
r_2 &= 22, \quad r_2 = 0A + 1B \\
r_3 &= 17, \quad r_3 = r_1 - 1 \cdot r_2, \quad r_3 = 1A - 1B \\
r_4 &= 5, \quad r_4 = r_2 - 1 \cdot r_3, \quad r_4 = -1A + 2B \\
r_5 &= 2, \quad r_5 = r_3 - 3 \cdot r_4, \quad r_5 = 4A - 7B \\
r_6 &= 1, \quad r_6 = r_4 - 2 \cdot r_5, \quad r_6 = -9A + 16B \\
r_7 &= 0, \quad r_7 = r_5 - 2 \cdot r_6 \\
\end{align*}
\]

So, \(39 \cdot (-9) + 22 \cdot 16 = 1 \). Multiplying both sides by 5 we get, \(39 \cdot (-45) + 22 \cdot 80 = 5 \), and therefore \(x = -45 \), and \(y = 80 \).

Q 1.3.10: \(374x + 231y = 11 \), ind a solution for \(x \) and \(y \).

Q 1.3.11: \(6x + 45y = 3 \), find a solution for \(x \) and \(y \).
Q 1.3.12: \(213x + 744y = 3\), solve for \(x\) and \(y\).

Q 1.3.13: \(32x + 39y = 6\), solve for \(x\) and \(y\).

Q 1.3.14: In general, what is the solution to \(Ax + By = d\), when \(d = 0\), for a given \(A\) and \(B\)?

Q 1.3.15: If (for a given \(A\), \(B\), and \(d\)) \(Ax + By = d\) has a solution, is that solution unique? If not, how would you construct new solutions?
1.4 Hodgepodge of questions

Q 1.4.1: $A > B$, $gcd(A, B) = 1$, and $2 \mid A$ or $2 \mid B$, both not both. Show that $gcd(A + B, A - B) = 1$

Q 1.4.2: Show that any fraction of the form $\frac{21N + 4}{14N + 3}$ is already in lowest terms.

Q 1.4.3: $gcd(7! + 4!, 5!) = ?$

Q 1.4.4: $gcd((N + 3)! + N!, (N + 1)!) = ?$

Q 1.4.5: $gcd(N! + M!, K!) = ?$

Q 1.4.6: - Find a solution for $6x + 5y = 7$.
- Setting S as your solution for x, and T as your solution for y, what do Q and R have to be in order for $x = kQ + S$, $y = kR + T$ to be solutions for all values of k?

Q 1.4.7: Show that F_{m+n} is a linear combination of F_n and F_m, where the F's are Fibonacci numbers.

Q 1.4.8: Show that $F_n \mid F_{kn}$ for any integer k.

Q 1.4.9: Show that $gcd(F_n, F_m) = F_{gcd(n,m)}$. This means that, for example, $gcd(F_3, F_6) = gcd(2, 8) = 2 = F_3 = F_{gcd(3,6)}$

Q 1.4.10: - Describe how you would extend the Euclid’s algorithm technique for solving Diophantine equations of the form ”$d = xA + yB$”, to solving Diophantine equations of the form ”$d = xA + yB + zC$”.
- When are there no solutions to this new kind of equation?
- How would you generate new solutions?
- Use your technique to find a solution for $3x - 14y + 2z = 5$, where $xyz \neq 0$.

Q 1.4.11: Show that if $gcd(A, B) = 1$, then:
- The smallest value of k for which $\frac{kA}{B}$ is an integer is $k = B$.
- The remainder of $\frac{kA}{B}$ is different for every value of k for $k = 1, 2, 3, \ldots, B$.

"$[x]$" means the "take the integer part of x", so $[\pi] = [3.5] = [3] = [3.999999] = 3$.

Q 1.4.12: Prove that if $gcd(A, B) = 1$, then $\left\lfloor \frac{A}{B} \right\rfloor + \left\lfloor \frac{2A}{B} \right\rfloor + \left\lfloor \frac{3A}{B} \right\rfloor + \cdots + \left\lfloor \frac{(B-1)A}{B} \right\rfloor = \frac{1}{2}(A - 1)(B - 1)$