
QI Lecture 5

Universality and Deutsch-Jozsa

Universal Quantum Gates

Theorem (Construction of Arbitrary Unitary Operators). Any unitary operation on n
qubits can be expressed as the product of single qubit operators and CNOT gates.

We can define the error when we apply the unitary operator V in place of U as

E(U,V ) ≡ max
∣ψ⟩

∥(U − V )∣ψ⟩∥

If PU is the probability of a given measurement assuming U is applied and PV is the
probability of the same outcome assuming V is applied, we find that

∣PU − PV ∣ ≤ 2E(U,V )

In other words, if we can approximate a given unitary operation to a high enough
precision, the results at the other end will have the same statistics. This is important
because if we only have access to a finite set of gate operations, then arbitrary unitary
operations are out of reach. Instead we need to know if we can usefully approximate any
unitary operation using only combinations of operations from our finite set.

The “standard set of universal gates” is the Hadamard (H), phase (S), controlled
not (CNOT), and π

8 (T )1 gates:

H = 1√
2
[ 1 1

1 −1
] S = [ 1 0

0 i
] CNOT =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T = [ 1 0

0 ei
π
4

]

A set of gates is universal if it can be used to approximate any unitary operator to
arbitrary precision. That doesn’t mean that it’s easy, merely possible. This particular set
is actually more than we need, since T 2 = S.

1The “π
8

gate” name is historical. T can also be written T = ei
π
8 [

e−i
π
8 0

0 ei
π
8

].
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Proving Universality

Using only T and H it’s possible to come arbitrarily close to any rotation on the Bloch
sphere. The central idea is that as long as you can rotate by approximately any amount
around two different axes, m̂ and n̂, then you can approximate any unitary operation on
one qubit, up to an ignorable global phase, using U = Rn̂(β)Rm̂(γ)Rn̂(δ). The idea is
similar (but slightly generalized) to the Z − Y decomposition for a single qubit.

By direct calculation (and ignoring global phase)

T = Rz (
π

4
) = cos(π

8
) I − sin(π

8
)Z

HTH = Rx (
π

4
) = cos(π

8
) I − sin(π

8
)X

doing one then the other, and remembering that ZX = iY 2

THTH = Rz (π4 )Rx (
π
4
)

= [cos (π8 ) I − i sin (π
8
)Z] [cos (π8 ) I − i sin (π

8
)X]

= cos2 (π8 ) I − i sin (π
8
) cos (π8 )X − i sin (π

8
) cos (π8 )Z − sin2 (π

8
)ZX

= cos2 (π8 ) I − i sin (π
8
) cos (π8 )X − i sin (π

8
) cos (π8 )Z − i sin2 (π

8
)Y

= cos2 (π8 ) I − i sin (π
8
) [cos (π8 )X + sin (π

8
)Y + cos (π8 )Z]

Comparing this to

Rn̂(ξ) = cos(ξ
2
) I − i sin(ξ

2
) (nxX + nyY + nzZ)

we see that we’re looking at a rotation around n̂ by an angle ξ where

n̂ = 1√
cos2 (π8 ) + 1

(cos(π
8
) , sin(π

8
) , cos(π

8
)) cos(ξ

2
) = cos2 (π

8
)

With a calculator, we can calculate these two

n̂ ≈ (0.678598,0.281085,0.678598) ξ ≈ 0.174443 × 2π

You should feel comfortable with the fact that all of these are nice, messy, irrational
numbers. If that angle were a rational fraction of 2π, ξ = p

q2π, then after q rotations by ξ

2This is a specific case of a more general property: σaσb = δabI+iεabcσc. εabc is the “Levi-Civita symbol”
which is the “sign of the permutation of {abc}”. ε123 = ε231 = ε312 = 1, ε321 = ε213 = ε132 = −1, and doubled
indices produce zeros (e.g., ε112 = 0).
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you’d have made p complete rotations, landing on every multiple of 2π
q . But for irrational

multiples of 2π, the rotation never lands on the same angle twice. Instead it produces a
set of angles that are “dense” on [0,2π), meaning that for any angle θ ∈ [0,2π) and any
error ε, there’s a k such that ∣θ − kξ∣ < ε. In other words, for sufficiently large k, we can
rotate by any angle around n̂ with arbitrarily small error.

If you rotate by ξ a total of N times, then you produce N points on the interval [0,2π)
and by the Pigeon Hole Principle3 there must be some j and k such that ∣kξ − jξ∣ ≤ 2π

N .
Therefore, (k−j)ξ is an angle smaller than 2π

N (which is arbitrarily small) and we now have
access to multiples of this arbitrarily small angle, `(k − j)ξ.

Finally, by direct calculation, we find that

HRn̂(ξ)H = Rm̂(ξ)

where m̂ ≈ (0.678598,−0.281085,0.678598). Notably, m̂ ≠ n̂ and we still have access to
arbitrarily fine control over the angle of rotation. With these two rotations in hand, we
can construct any arbitrary rotation on the Bloch sphere, and thus any arbitrary unitary
operator (ignoring global phase).

How Many Gates?

You would be right to suspect, after the derivation above, that the number of universal
gates you might need for your quantum computer, for even the simplest operations, is
large. But how large? The Solvay-Kitaev theorem answers this question.

• Define SU(2) to be the set of 2 × 2 unitary operators with determinant one4 (this is
another way to say “don’t worry about the global phase”).

• Define G be a finite set of unitary operators in SU(2), such that the inverse of every
element in G is also included in G.

• Define ⟨G⟩ as the set of all finite products of elements from G. For example, if
a, b, c, d ∈ G, then acdca−1b3c ∈ ⟨G⟩. Elements in ⟨G⟩ are called “words” and the
number of operations in a word is the “length”, `, of that word.

Theorem (Solvay-Kitaev). Assume that ⟨G⟩ is “dense” in the set of SU(2), in the sense
that for any U ∈ SU(2), there exists a V ∈ ⟨G⟩ such that E(U,V ) is arbitrarily small.

Then for any (very small) ε ∈ R+, every U ∈ SU(2) there is a “word” V ∈ ⟨G⟩ with a
length no longer than ` = O (logc (1

ε
)), where c ≈ 4, such that E(U,V ) < ε.

3“If you have more pigeons than pigeon holes, then at least some pigeons will have a roommate.” Why
pigeons are the titular example, or why they’re being kept in holes instead of nests or cubbies, is not worth
worrying about.

4“SU(n)” means “special unitary n × n matrices”, where “special” means “determinant 1”.
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Solvay-Kitaev promises that any single qubit unitary operation can be simulated with
arbitrarily small error using only gates from a universal set of gates and that decreasing
the error, ε, doesn’t force us to use too many more gates.

Deutsch’s Problem

Deutsch’s Problem was among the first quantum algorithm discovered that is known to
be exponentially faster than any known algorithm and is almost always the first algorithm
taught. Being famously pointless, it’s more proof-of-concept than useful. We’ll look at a
small version first.

There is a function f ∶ {0,1}→ {0,1} that is a “black box”.5 The only way to figure out
what f does is to feed it an input and see what it produces as output. The question that
the algorithm seeks to answer is “Is f balanced or constant?”,6 where “balanced” means
that f is 0 exactly as often as it is 1.

In order to make this determination classically, we’d need to evaluate f twice. If
f(0) = f(1), it’s constant and if f(0) ≠ f(1), it’s balanced. We’ll find that Deutsch-Jozsa
can do this in one evaluation.

We enact f(x) through a unitary operation, Uf ,

Uf ∣x⟩∣y⟩ = ∣x⟩∣y ⊕ f(x)⟩

where ⊕ indicates addition modulo 2.7 Notice that unlike the Hadamard operations,
Uf is being applied to both qubits. Stepping through the circuit in figure 2 we can see how
the algorithm works.

Figure 1: The circuit for the Deutsch-Jozsa Algorithm.

The initial state is

5This notation means that both the domain and range of f are {0,1}.
6Notice that we’re not answering “What is f?”, a genuinely useful question.
70⊕ 0 = 0, 0⊕ 1 = 1, and 1⊕ 1 = 0.

4



I ∶ ∣0⟩∣1⟩

The Hadamard operations put both qubits into superpositions. H⊗H ∣0⟩∣1⟩ = ( ∣0⟩+∣1⟩√

2
) ( ∣0⟩−∣1⟩√

2
)

II ∶ 1

2
(∣0⟩ + ∣1⟩) (∣0⟩ − ∣1⟩)

A clever thing happens when the second input to Uf is ∣−⟩.
If f(x) = 0, then Uf ∣x⟩ (∣0⟩ − ∣1⟩) = ∣x⟩ (∣0⊕ 0⟩ − ∣1⊕ 0⟩) = ∣x⟩ (∣0⟩ − ∣1⟩).
If f(x) = 1, then Uf ∣x⟩ (∣0⟩ − ∣1⟩) = ∣x⟩ (∣0⊕ 1⟩ − ∣1⊕ 0⟩) = ∣x⟩ (∣1⟩ − ∣0⟩).
We can sum this up with a single equation:

Uf ∣x⟩ (∣0⟩ − ∣1⟩) = (−1)f(x)∣x⟩ (∣0⟩ − ∣1⟩)

With this trick in hand, we can cleanly apply Uf :

Uf
1
2 (∣0⟩ + ∣1⟩) (∣0⟩ − ∣1⟩)

= 1
2
[Uf ∣0⟩ (∣0⟩ − ∣1⟩) +Uf ∣1⟩ (∣0⟩ − ∣1⟩)]

= 1
2
[(−1)f(0)∣0⟩ (∣0⟩ − ∣1⟩) + (−1)f(1)∣1⟩ (∣0⟩ − ∣1⟩)]

= 1
2
[(−1)f(0)∣0⟩ + (−1)f(1)∣1⟩] (∣0⟩ − ∣1⟩)

III ∶ 1

2
[(−1)f(0)∣0⟩ + (−1)f(1)∣1⟩] (∣0⟩ − ∣1⟩)

Finally, a second Hadamard operation is applied to the first qubit, H ⊗ I. Again, be
very careful to note the where the operators are applied and which symbols are taking
about the first and second qubits.

H ⊗ I 1
2
[(−1)f(0)∣0⟩ + (−1)f(1)∣1⟩] (∣0⟩ − ∣1⟩)

= 1
2
[(−1)f(0)H ∣0⟩ + (−1)f(1)H ∣1⟩] (∣0⟩ − ∣1⟩)

= 1
2 [(−1)f(0) ( ∣0⟩+∣1⟩√

2
) + (−1)f(1) ( ∣0⟩−∣1⟩√

2
)] (∣0⟩ − ∣1⟩)

= 1
2
√

2
[((−1)f(0) + (−1)f(1)) ∣0⟩ + ((−1)f(0) − (−1)f(1)) ∣1⟩] (∣0⟩ − ∣1⟩)

= ((−1)f(0)+(−1)f(1))∣0⟩+((−1)f(0)−(−1)f(1))∣1⟩
2 ( ∣0⟩−∣1⟩√

2
)

So the final state is

IV ∶
((−1)f(0) + (−1)f(1)) ∣0⟩ + ((−1)f(0) − (−1)f(1)) ∣1⟩

2
(∣0⟩ − ∣1⟩√

2
)

We don’t need to bother measuring the second qubit, because we already know what
the result will be. It’s ∣−⟩. The state of the first qubit depends on f(x):
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If f is constant, then the first qubit is ±∣0⟩ and if f is balanced, then the first qubit
is ±∣1⟩. Therefore, with only one evaluation of f , we can determine with certainty if f is
balanced or not.

The Deutsch-Jozsa Algorithm

Answering a silly question (balanced vs. constant) by evaluating a function once instead
of twice isn’t terribly impressive. So we’ll look at a very similar algorithm where we try to
answer the same question for f ∶ {0,1}N → {0,1}. That is, f outputs a 0 or 1 for every N
bit string (every number from 0 to 2N − 1) and is either constant or balanced, in the sense
that half the outputs are 0 and half are 1. The circuit should look familiar.

Figure 2: In this version, the top “wire” is actually N qubits.

We introduce some new notation to handle N -qubit strings.

∣0⟩⊗N = ∣0⟩∣0⟩ . . . ∣0⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

= ∣00 . . .0⟩ H⊗N =H ⊗H ⊗ . . .⊗H
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

The initial state is:

I ∶ ∣0⟩⊗N ∣1⟩

After the first bank of Hadamard gates the state is:

(∣0⟩ + ∣1⟩√
2

)
⊗N

(∣0⟩ − ∣1⟩√
2

)

That state on the left is an equal superposition of every N -qubit string: ∣0 . . .00⟩,
∣0 . . .01⟩, ∣0 . . .10⟩, up to ∣1 . . .11⟩. If we think of these strings as the binary representation
of a number, we can save a little room by just writing that number. For example, ∣6⟩ =
∣0 . . .0110⟩.

In other words, ∣x⟩ = ∣x1x2 . . . xN ⟩, where xj is the jth binary digit of x.
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II ∶ 1

2N/2

2N−1

∑
x=0

∣x⟩ ( ∣0⟩ − ∣1⟩√
2

)

This is much easier than writing the sum over every binary digit individually.

1

2N/2

2N−1

∑
x=0

∣x⟩ = 1

2N/2

1

∑
x1=0

1

∑
x2=0

⋯
1

∑
xN=0

∣x1x2 . . . xN ⟩

Just like in the simpler algorithm above, Uf ∣x⟩ (∣0⟩ − ∣1⟩) = (−1)f(x)∣x⟩ (∣0⟩ − ∣1⟩). All
that’s important here is that f(x) ∈ {0,1} and the fact that x now runs from 0 to 2N − 1
doesn’t change that. Applying the (now much more complicated) Uf :

Uf
1

2N/2 ∑
2N−1
x=0 ∣x⟩ ( ∣0⟩−∣1⟩√

2
)

= 1
2N/2 ∑

2N−1
x=0 Uf ∣x⟩ ( ∣0⟩−∣1⟩√

2
)

= 1
2N/2 ∑

2N−1
x=0 (−1)f(x)∣x⟩ ( ∣0⟩−∣1⟩√

2
)

So the state of the system after the function has been applied is

III ∶ 1

2N/2

2N−1

∑
x=0

(−1)f(x)∣x⟩ ( ∣0⟩ − ∣1⟩√
2

)

For the last bank of Hadamard gates, it helps to write the affect of H on each qubit
like this:

H ∣j⟩ = 1√
2

1

∑
k=0

(−1)xy ∣k⟩

Take a minute to explicitly write this out for j = 0,1 (it’s a lot simpler than it looks).
Applying the same operation to every binary digit we get

H ∣x⟩ = 1

2N/2

2N−1

∑
y=0

(−1)x⋅y ∣y⟩

where x ⋅ y ≡ x1y1 +x2y2 + . . .+xNyN . Again, seriously, take a minute to untangle what
just happened there.
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(H⊗N ⊗ I) 1
2N/2 ∑

2N−1
x=0 (−1)f(x)∣x⟩ ( ∣0⟩−∣1⟩√

2
)

= 1
2N/2 ∑

2N−1
x=0 (−1)f(x)H⊗N ∣x⟩ ( ∣0⟩−∣1⟩√

2
)

= 1
2N/2 ∑

2N−1
x=0 (−1)f(x) ( 1

2N/2 ∑
2N−1
y=0 (−1)x⋅y ∣y⟩) ( ∣0⟩−∣1⟩√

2
)

= 1
2N ∑

2N−1
x=0 ∑2N−1

y=0 (−1)x⋅y+f(x)∣y⟩ ( ∣0⟩−∣1⟩√

2
)

= 1
2N ∑

2N−1
y=0 (∑2N−1

x=0 (−1)x⋅y+f(x)) ∣y⟩ ( ∣0⟩−∣1⟩√

2
)

The final state is therefore

IV ∶ 1

2N

2N−1

∑
y=0

⎛
⎝
2N−1

∑
x=0

(−1)x⋅y+f(x)
⎞
⎠
∣y⟩ ( ∣0⟩ − ∣1⟩√

2
)

Once again, the last qubit is always in the state ∣−⟩. The state of the first N qubits is
1
2N ∑

2N−1
y=0 (∑2N−1

x=0 (−1)x⋅y+f(x)) ∣y⟩. Now consider the amplitude of just ∣0⟩.

1

2N
⎛
⎝
2N−1

∑
x=0

(−1)x⋅0+f(x)
⎞
⎠
∣0⟩ = 1

2N
⎛
⎝
2N−1

∑
x=0

(−1)f(x)
⎞
⎠
∣0⟩

If f is constant, then the total of the sum is ±2N . Therefore the amplitude of ∣0⟩ is ±1,
meaning that P (0) = ∣ ± 1∣2 = 1. We can stop here, because the probability of any other
result must be zero.8

On the other hand, if f is balanced, then half of the terms in the sum will be −1, the
other half will be 1, and the total will be zero. Therefore, P (0) = 0.

So we have a measurement that tell us whether f is constant or balanced after a single
evaluation of f :

∣y⟩ = ∣0⟩⇒ constant

∣y⟩ ≠ ∣0⟩⇒ balanced

8If that bothers you, you’ll love the homework!
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Exercises

1) Breaking stuff to see how it works.

For Deutsch’s Problem, what changes if the second qubit is initially equal to ∣0⟩ instead of
∣1⟩? To figure this out, step through the entire circuit.

2) Really? The probability of any other result is zero?

The state of the first N qubits at the end of the Deutsch-Jozsa Algorithm is

1

2N

2N−1

∑
y=0

⎛
⎝
2N−1

∑
x=0

(−1)x⋅y+f(x)
⎞
⎠
∣y⟩

If f is constant, the probability of measuring ∣0⟩ is 1, and therefore the probability of
measuring any other result must be zero. That “therefore” is a little unsatisfying.

By explicit calculation, show that when f is constant the probability amplitude for any
non-zero ∣y⟩ is zero.

Hint: First try ∣y⟩ = ∣0 . . .01⟩, to get a sense of what’s going on, then prove it more
generally. My goal is to trick you into staring at the “binary number notation” until it
makes sense.
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