
QI Lecture 7

Classical Information

What is Information?

In 1948, when Claude Shannon first created our modern mathematical description of in-
formation, he did so by first framing the problem.

“The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point. [...] The significant aspect
is that the actual message is one selected from a set of possible messages. The system must
be designed to operate for each possible selection, not just the one which will actually be
chosen since this is unknown at the time of design.”

Shannon then appeals to our intuition to justify using logarithms to define information.

“One feels, for example, that two punched cards should have twice the capacity of one
for information storage...”

Shannon used H to describe information and took as his first premise that the amount
of information that can be communicated by selecting an item from a set with n items
total obeys

H ∝ log(n)

This corresponds to our intuition. If there are n possible states for one punch card and
it can store log(n) information, then there are n2 possible states for two punch cards and
the two combined can store log (n2) = 2 log(n) information.

Setting the base of the logarithm defines the units of the information. In particular,
H = log2(n) defines information in units of “bits”. Using base e, the natural log, the
units are “nats” and using base π the units are “slices”. Nats are typically used for
“differential entropy” where the state space is continuous, such as when talking about how
much information can be sent using radiowaves within some limited band. The one time
that base π is used is when making that “slices” joke. You won’t see it again.
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If every member of an “alphabet” with n “letters” is equally likely to be sent, then our
job is already done. But consider the following strings:

SKFJGHIUY SDRTFUDGV EBRJKGFHJNOHFGUDY GIUEGHBFA

AAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAA

The first string contains more information than the second, because the second can be
compressed. Think about how you would read these off to someone over the phone; for the
first you’d need to laboriously list off every letter and for the second you’d probably say
“26 A’s, a C, and then 19 more A’s”.

We think of the English alphabet as having 26 letters, but in effect it has fewer. For
example, Q, X, and Z are pretty rare. We might naively estimate that the “entropy rate”
of written English should be about H = log2(26) ≈ 4.7 bits. However, that’s the rate for
a completely random string of equally-likely letters. Experimentally, by asking people to
predict the next letter in a (grammatically correct) sentence, we find that the entropy rate
of written English is in the neighborhood of 1 bit per letter (Shannon estimated 0.6-1.3).
So we not only need to worry about the size of the alphabet, n, but also the probability of
each letter.

A “probability distribution”, p(X), of a “random variable”, X, is a function
which specifies the probability of each possible value, xj , of X being selected. We write
p(X = xj) = pj or just p(xj) = pj .

We define the Shannon Entropy as a function of probability distributions and have a
few different ways of writing the same situation:

H [X] =H [{p1, p2, . . . , pn}] =H [{pj}j]

So far we know that if p1 = p2 = . . . = pn =
1
n , then

H [{
1

n
,

1

n
, . . . ,

1

n
}] = log2(n)

“The Number of Yes/No Questions”

Another way to think about information measured in bits, is to ask yourself “what is
the minimum number of yes/no questions I need to ask to specify a random variable, on
average?”
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Example By considering an alphabet {A,B,C,D} with a probability distribution
p(A) = p(B) = p(C) = p(D) = 1

4 . Find H [{1
4 ,

1
4 ,

1
4 ,

1
4
}] by “asking yes/no questions” about

which letter has been selected.

A terrible way to do this is to ask “Is it A?”, “Is it B?”, and “Is it C?” If all the answers
are “no”, then clearly D has been selected. The average number of questions in this case is

1

4
1 +

1

4
2 +

1

2
3 =

9

4
= 2.25

But when we ask “Is it A?”, we expect the answer to be “no” with probability 3
4 . A

more efficient way to search this alphabet is to make the yes and no equally probable; to
partition the alphabet in half.

A better series of questions is “Is it A or B?” followed by (depending on the answer)
“Is it A?” or “Is it B?”. The number of questions is always exactly two.

But here’s something to notice: after the first question is asked, the entropy of the
remaining possibilities drops from H [{1

4 ,
1
4 ,

1
4 ,

1
4
}] to H [{1

2 ,
1
2
}]. That is to say, we go

from one of four possibilities to one of two. Since the entropy is the average number of
questions

H [{
1

4
,
1

4
,
1

4
,
1

4
}] = 1 +H [{

1

2
,
1

2
}] = 1 + 1 = 2

This corresponds with exactly what we’d expect

H [{
1

4
,
1

4
,
1

4
,
1

4
}] = log2(4) = 2

∎

Example Assume the following probability distribution on the letters A-F.

item A B C D E F

p(item) 1
4

1
8

1
8

1
4

1
8

1
8

Once again, the most efficient way to ask questions is to have yes’s and no’s that are
equally likely. There are a few ways to do this, but we’ll use “is it A or D?” as the first
question. After that first question there’s a 1

2 probability of the remaining choices being
A or D and 1

2 of the remaining choices being B, C, E, or F. Notice what this does to the
entropy:
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H [{
1

4
,
1

8
,
1

8
,
1

4
,
1

8
,
1

8
}] =H [{

1

2
,
1

2
}]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q: “A or D?”

+
1

2
H [{

1

2
,
1

2
}]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A∶“yes”

+
1

2
H [{

1

4
,
1

4
,
1

4
,
1

4
}]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A∶“no”

= 1 +
1

2
⋅ 1 +

1

2
⋅ 2

∎

We can generalize this. Partition the distribution into n distinct sets, such that the
probability of selecting any item from the jth set is qj and the probability of selecting only
the kth item in the jth set is qjpjk. We ask one round of questions to figure out which set
the selection is in, then ask a second round of questions (dependent on the result from the
first round) to determine the particular item in the set.1 The average number of yes/no
questions is then

H [{q1p11, . . . , q1p1n1 , q2p21, . . . , q2p2n2 , . . .}] =H [{q1, q2, . . . , qn}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1st round of questions

+∑
k

qkH [{pk1, pk2, . . . , pknk
}]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2nd round of questions

This is the key to finding a general equation or the Shannon entropy.

Assume that the probabilities in a finite distribution, {p1, p2, . . . , pn}, are all ratio-
nal valued. Since we can approximate any number to arbitrary precision using rational
numbers, this isn’t a terribly disruptive assumption.

It follows that for an appropriate choice of m, we can partition m items into n groups
such that m = ∑jmj and pj =

mj

m =
mj

∑j mj
. If the probability of selecting any one of the m

items is equal, then pj is the probability of selecting any item from the jth partition.

H [{
1

m
,

1

m
, . . . ,

1

m
}] =H [{

m1

m
,
m2

m
, . . . ,

mn

m
}] +∑

k

mk

m
H [{

1

mk
,

1

mk
, . . . ,

1

mk
}]

log(m) =H [{
m1

m
,
m2

m
, . . . ,

mn

m
}] +∑

k

mk

m
log(mk)

∑
k

mk

m
log(m) =H [{

m1

m
,
m2

m
, . . . ,

mn

m
}] +∑

k

mk

m
log(mk)

0 =H [{
m1

m
,
m2

m
, . . . ,

mn

m
}] +∑

k

mk

m
(log(mk) − log(m))

1This can be extended ad nauseam, with sets within sets within sets, but what we’re really interested
in is this equation.
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H [{
m1

m
,
m2

m
, . . . ,

mn

m
}] = −∑

k

mk

m
log (

mk

m
)

Finally, substituting the probabilities back in, pj =
mj

m , we get the famous equation for
Shannon Entropy!

H [{p1, p2, . . . , pn}] = −∑
k

pk log (pk)

Since log(x) < 0 for x ∈ (0,1), that negative actually ensures that the entropy is positive.
The bounds on the Shannon entropy are

0 ≤H [{p1, p2, . . . , pn}] ≤ log(n)

The lower bound, zero, occurs for probability distributions that are completely unbal-
anced, where a single letter has probability 1. The upper bound, log(n), occurs for uniform
probability distributions, where every letter is equally likely. This is a good rule in general;
the greatest amount of information is communicated when every letter is equally likely and
the greatest amount is learned when every answer to a question is equally likely.

The entropy rate, or the average number of bits per letter, gives us a limit on data
compression. A string of bits, seemingly random and equally probable, has an entropy rate
of 1 bit per character. The byte (8 bits) was created initially to store a single character
of text but (as can be demonstrated experimentally or with computers and lots of reading
material) the entropy rate of written English is actually closer to 1 bit per character. That
implies the possibility of an at most 8-fold compression.

Shannon entropy tells us nothing about what that encoding scheme should be; it only
gives us a limit on how good it might be.

Less Than a Bit

A 0/1 can contain less than one bit of information if the probability of each isn’t 1
2 . For

example, “11111111111111...” doesn’t communicate much.
There are two things to notice here. First, entropy is maximized for p = 1

2 .

0 =
dH

dp
=

1

ln(2)
[− ln(p) − 1 + ln(1 − p) + 1] ⇒ ln(p) = ln(1 − p) ⇒ p =

1

2

Second, we’ll use the standard that
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Figure 1: H [{p,1 − p}] = −p log2(p) − (1 − p) log2(1 − p)

0 log(0) = 0

because

lim
p→0

p logb(p) =
1

ln(b)
lim
p→0

p ln(p) =
1

ln(b)
lim
p→0

ln(p)
1
p

=
1

ln(b)
lim
p→0

1
p

− 1
p2

=
−1

ln(b)
lim
p→0

p = 0

Now, it may bother you that a string of 1’s and 0’s can carry less than 1 bit of in-
formation per digit. After all, regardless of the probabilities involved, it takes 1 bit to
describe a 0-or-1. The key to compressing data is to break your bits into larger blocks
and use “codewords” of different lengths, so that short code words correspond to likely
sequences and long codewords apply to unlikely sequences. For example, if p(0) = 0.99 and
p(1) = 0.01, then a Huffman code2 could use “1” to represent “0000000000” and “01” to

2One example of an algorithm for creating optimal or nearly optimal “codebooks”..
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represent “0000000001”, and some very long codeword to represent the extremely unlikely
“1111111111”.3

The string of compressed data uses its symbols approximately equally often, so in the
case of bits you have an entropy of 1. This means that a string of bits with an entropy
of 0.1 bits per digit can be compressed by a factor of ten. Typically, the larger the blocks
that are considered, the closer the encoding comes to being optimal.

Conditional and Mutual Information

We describe both parties using random variables, X for the sender and Y for the receiver.
The probability distributions of X and Y are p(x) and p(y), the joint distribution is p(x, y),
and the conditional probability distribution is p(y∣x) = p(x)p(x, y).

The “conditional entropy”

H[Y ∣X] = −∑
x,y

p(x, y) log(p(y∣x))

is the entropy left in Y when you know what X is. For example, if you have two coins
that always land the same way when flipped, the entropy of either is H[X] =H[Y ] = 1 bit.
But if they’re always the same, then p(y∣x) = 0,1 and therefore H[Y ∣X] = 0. That is, if you
know the value of X, and Y and X are always the same, then there’s no entropy remaining
in Y .

The “mutual information” can be written in a few mathematically equivalent forms

I[X;Y ] =H[Y ] −H[Y ∣X] = −∑
y

p(y) log(p(y)) +∑
x,y

p(x, y) log(p(y∣x))

I[X;Y ] =H[X] −H[X ∣Y ] = −∑
x

p(x) log(p(x)) +∑
x,y

p(x, y) log(p(x∣y))

I[X;Y ] =D (p(x, y)∥p(x)p(y)) =∑
x,y

p(x, y) log(
p(x, y)

p(x)p(y)
)

is the amount of information shared by two random variables. In the “always the same
side up” example from a moment ago, I[X;Y ] = H[Y ] −H[Y ∣X] = 1 − 0 = 1 because each
coin flip produces one bit of information and they share that same bit. However, if they’re
completely independent (like actual coins), then Y has no dependence on X and therefore
I[X;Y ] =H[Y ] −H[Y ∣X] =H[Y ] −H[Y ] = 0.

3There’s a (probably apocryphal) story about engineers at Bell Labs, shortly after Huffman codes were
invented, shouting “One!” at each other rather than “F*&$ you!”, since it was the most efficient encoding
of their conversations.
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The third equation, I[X;Y ] = D (p(x, y)∥p(x)p(y)), describes the mutual information
as the “relative entropy” (something we won’t cover here) between the joint probability
distribution, p(x, y), and the distribution that assumes the two variables are independent,
p(x)p(y).

Channel Capacity

Successful communication means that two parties will share the same information after the
communication event. A good way to describe that is in terms of the mutual information
shared by the two parties. A “channel” is described by the conditional probability, p(y∣x),
since we’re interested in the probability of X sending a letter and Y receiving that letter.4

The “channel capacity”

C ≡ max
p(x)

I[X;Y ] = max
p(x)

H[Y ] −H[Y ∣X]

is the maximum possible value of the mutual information. The conditional probabilities
are defined by the channel that’s being used, but the probability distribution over X, p(x),
can be modified. The channel capacity is the maximum amount of information that can
be transmitted over a channel with each use. Typically, this is coupled with some kind
of encoding scheme optimized for the channel. Fortunately, information is a “resource” in
the sense that the engineers worried about transmitting information don’t need to worry
about what that information represents or how it was encoded previously; they just need
to send “information”.

Theorem (The Channel Coding Theorem). If the channel capacity is C, then any infor-
mation rate less than or equal to C is achievable using “codewords” of length n

C to encode
strings of characters of length n. Moreover, the probability of error approaches zero as
n→∞.

In application, n doesn’t need to be terribly large. So for example, if C = 0.5 bits,
then we could encode (for example) “010101→ 110010110001”. The codeword is longer to
absorb the inevitable errors. For example, “110010100001” and “110010110011” (which
have a single bit-flip error each) would both be assumed to be equivalent to the original
codeword and would be decoded as “010101”. As n gets bigger, the law of large numbers
kicks in pretty quickly and the probability of one codeword being mistaken for another
becomes vanishingly small.

4The mutual information is a little more sophisticated than that. For example, when using a substitution
cipher none of the received letters are the same as the sent letters and yet that has no impact on the
calculation of the mutual information.
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Example First, we’ll calculate the channel capacity of Alice, in a quiet room, clearly
and slowly saying “zero” or “one” to Bob, who is listening carefully. Alice’s random variable
is X and Bob’s is Y .

Alice’s probability distribution is

⎧⎪⎪
⎨
⎪⎪⎩

p(x = 1) = a

p(x = 0) = b

These are the probabilities that she will say either 0 or 1. The conditional probability
on this very clean channel is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(y = 1∣x = 1) = 1

p(y = 1∣x = 0) = 0

p(y = 0∣x = 1) = 0

p(y = 0∣x = 0) = 1

and the joint probabilities are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(x = 1, y = 1) = p(x = 1)p(y = 1∣x = 1) = a

p(x = 0, y = 1) = p(x = 0)p(y = 1∣x = 0) = 0

p(x = 1, y = 0) = p(x = 1)p(y = 0∣x = 1) = 0

p(x = 0, y = 0) = p(x = 0)p(y = 0∣x = 0) = b

and finally the probability distribution for Bob is the marginal probability of Y

⎧⎪⎪
⎨
⎪⎪⎩

p(y = 1) = p(x = 1, y = 1) + p(x = 0, y = 1) = a

p(y = 0) = p(x = 1, y = 0) + p(x = 0, y = 0) = b

We see immediately that H[Y ] =H [{a, b}] and that the conditional probability is

H[Y ∣X]

= −∑
1
x,y=0 p(x, y) log(p(y∣x))

= −p(0,0) log(p(0∣0)) − p(0,1) log(p(1∣0)) − p(1,0) log(p(0∣1)) − p(1,1) log(p(1∣1))

= 0 + 0 + 0 + 0

Here we used the “0 log(0) = 0” standard.
This result makes sense, because there is no randomness in Bob’s random variable given

Alice’s. If you’ve been listening to Alice, then there’s nothing new to learn from reading
what Bob writes down. Therefore
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C = max
p(x)

H[Y ] −H[Y ∣X] = max
p(x)

H [{a, b}] =H [{
1

2
,
1

2
}] = 1

Since a = b = 1
2 is the known maximum for H [{a, b}].

∎

Example The denizens of a castle are under siege and their only hope is to commu-
nicate with friendly forces beyond the besieging army. They’ve long since run out of paper
(things are not going well), but they still have a supply of messenger birds. Every hour
they attempt to communicate one bit of information to their friends by either releasing a
bird (1) or not (0).

To complicate things, there are archers turning their 1’s into 0’s half the time, thus
adding noise to their communication channel. How much information can be communicated
per bird on average?

The answer is the “channel capacity”, which is the maximum value of the mutual
information between the castle, random variable X, and the friendly army, system Y . It’s
up to X to choose a probability distribution that will maximize the mutual information.

Figure 2: With probability a a bird is released, with probability b = 1 − a it is not, and
there is a 1

2 chance that when a bird is released it will be shot down.
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The probability distribution over X, the sending party, is

⎧⎪⎪
⎨
⎪⎪⎩

p(x = 1) = a

p(x = 0) = b

The conditional probability over this anti-avian channel is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(y = 1∣x = 1) = 1
2

p(y = 1∣x = 0) = 0

p(y = 0∣x = 1) = 1
2

p(y = 0∣x = 0) = 1

The joint distribution is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(x = 1, y = 1) = p(x = 1)p(y = 1∣x = 1) = a
2

p(x = 0, y = 1) = p(x = 0)p(y = 1∣x = 0) = 0

p(x = 1, y = 0) = p(x = 1)p(y = 0∣x = 1) = a
2

p(x = 0, y = 0) = p(x = 0)p(y = 0∣x = 0) = b

and therefore the probability distribution over Y , the receiving party, is

⎧⎪⎪
⎨
⎪⎪⎩

p(y = 1) = p(x = 1, y = 1) + p(x = 0, y = 1) = a
2

p(y = 0) = p(x = 1, y = 0) + p(x = 0, y = 0) = b + a
2

First, the entropy of the friendly army’s random variable is

H[Y ] =H [{
a

2
, b +

a

2
}] =H [{

a

2
,1 −

a

2
}] = −

a

2
log (

a

2
) − (1 −

a

2
) log (1 −

a

2
)

where we used the fact that b = 1 − a. The conditional entropy is

H[Y ∣X]

= −∑
1
x,y=0 p(x, y) log(p(y∣x))

= −p(0,0) log(p(0∣0)) − p(0,1) log(p(1∣0)) − p(1,0) log(p(0∣1)) − p(1,1) log(p(1∣1))

= 0 + 0 − a
2 log (1

2
) − a

2 log (1
2
)

= a log (2)

= a

and therefore
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I(X;Y ) = −
a

2
log (

a

2
) − (1 −

a

2
) log (1 −

a

2
) − a

To find the maximum of this we take the derivative, setting it equal to zero, and
remembering that the log is base 2

0 =
dI(X;Y )

da

0 = −1
2 log (a

2
) − 1

2 +
1
2 log (1 − a

2
) + 1

2 − 1

1 = −1
2 log (a

2
) + 1

2 log (1 − a
2
)

2 = − log (a
2
) + log (1 − a

2
)

2 = log (
1−a

2
a
2

)

2 = log ( 2
a − 1)

22 = 2
a − 1

4 + 1 = 2
a

a = 2
5

This strikes a balance between minimizing the noise, which is only a problem when
x = 1, and maximizing the information, which is greatest when a = b = 1

2 . Plugging this
maximum, a = 2

5 , into the mutual information gives us the channel capacity

C = −
1

5
log (

1

5
) −

4

5
log (

4

5
) −

2

5
≈ 0.322

So those arches are really slowing down communication. Instead of communicating 1
bit per hour, the people in the castle are reduced to at most a little less than a third of a
bit per hour.

Using a block length of n = 10 bits (for example), their codewords should be ⌊ n
C ⌋ =

⌊ 10
0.322⌋ = 31 bits long and should use the optimal probability distribution, p(0) = 3

5 and
p(1) = 2

5 . For example, one particular block of ten bits could be encoded as

1000101010Ð→ 0110000011010010000010000100001

∎
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Exercises

#1) Entropy

State all answers in bits.

a) H [{1
3 ,

1
6 ,0,

1
2
}] =?

b) How much information can be stored on a 3-digit padlock?

c) Let X be the random variable that represents the sum of two six-sided dice. What
is H[X]?

#2) Counterfeit

In a bag of N coins there is a single counterfeit. All of the coins look the same and weigh
exactly the same, with the exception of the counterfeit which is either lighter or heavier. As
Master of Coin it’s your job to find the counterfeit, but you only have access to a balance
scale and you’re short on time.

Figure 3: A balance scale doesn’t tell you how much something weighs, only which side is
heavier.

a) How many different responses can a balance scale give you and what are they?
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b) To find the counterfeit, how many possibilities do you need to be able to distinguish?

c) In theory, what is the minimum number of measurements you’ll need in order to find
the counterfeit?

d) (optional) Figure out how to find a single either-heavier-or-lighter coin from a set of
12 while using the scale only 3 times.

#3) The Symmetric Channel

In the symmetric channel there is a chance of α that no message is received at all. So X
can be 0 or 1, while Y can be 0, 1, or e for “error”. The conditional probabilities here are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(y = 1∣x = 1) = 1 − α

p(y = 1∣x = 0) = 0

p(y = 0∣x = 1) = 0

p(y = 0∣x = 0) = 1 − α

p(y = e∣x = 1) = α

p(y = e∣x = 0) = α

What is the channel capacity of the symmetric channel?

#4) Unconditional

Show that if H[Y ∣X] = 0, then Y is a one-to-one function of X. That is, show that for all
x such that p(x) ≠ 0, there is only one possible value of y with p(x, y) > 0.

This shows that 1-1 codes, like a substitution cipher (A=3, B=1, C=15, ...), don’t
change the information content.

14


