
QI Lecture 9

Quantum Information I

Mixed States ↔ Pure States

Purification

The partial trace is an incredibly powerful tool; it allows us to take into account the fact
that we don’t have access to some subspace of a quantum system which, technically, is the
only situation we’re ever in. As isolated as a quantum system is, there’s always at least a
little interaction with the environment, and the environment is a subspace we can never
entirely take into account. As we saw in the last example, taking a partial trace can turn
pure states into mixed states.

The “purification” of a mixed state is a way of writing it in a larger space such that
in the larger space it’s a pure state. That is, if

ρa =
N

∑
k=1

pk∣ψk⟩a⟨ψk∣a

where ∣ψk⟩a ∈ A with dim(A) = N , then we call ∣Φ⟩ab ∈ A ⊗ B with dim(B) ≥ N a
“purification” of ρa if

Trb [∣Φ⟩⟨Φ∣] = ρa

Define the basis of the space B to be {∣j⟩b}. Then

∣Φ⟩ =∑
k

√
pk∣ψk⟩a∣k⟩b

is a purification of ρa because
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Trb [∣Φ⟩⟨Φ∣]

= ∑j⟨j∣b (∑i
√
pi∣ψi⟩a∣i⟩b) (∑k

√
pk⟨ψk∣a⟨k∣b) ∣j⟩b

= ∑j (∑i
√
pi∣ψi⟩a⟨j∣i⟩b) (∑k

√
pk⟨ψk∣a⟨k∣j⟩b)

= ∑j (∑i
√
pi∣ψi⟩aδij) (∑k

√
pk⟨ψk∣aδjk)

= ∑j (
√
pj ∣ψj⟩a) (

√
pj⟨ψj ∣a)

= ∑j pj ∣ψj⟩a⟨ψj ∣a

= ρa

The purification is not unique. Not only did we not specify which space we’re using for
B, but we could have done the same derivation with any basis for B.

The purification is rather profound. Is every mixed state a pure state in a larger space
that we don’t have complete access to? Is the universe in a pure state? What if it’s in a
mixed state?

Fun stuff.

Example Find and verify a purification for

ρa =
3

4
∣1⟩⟨1∣ +

1

4
(

3∣1⟩ + 4∣2⟩

5
)(

3⟨1∣ + 4⟨2∣

5
) ∈ A

Following the procedure above, the purification is ρ = ∣Φ⟩⟨Φ∣ ∈ A⊗B where

∣Φ⟩ =

√
3

2
∣1⟩a∣1⟩b +

1

2
(

3∣1⟩a + 4∣2⟩a
5

) ∣2⟩b =

√
3

2
∣1⟩a∣1⟩b +

3

10
∣1⟩a∣2⟩b +

2

5
∣2⟩a∣2⟩b

and ∣1⟩b, ∣2⟩b are basis states in space B. We can pick absolutely any orthogonal states
in B, so we could just as easily switch ∣1⟩b ↔ ∣2⟩b or, what the heck, use ∣◻⟩b and ∣○⟩b.

ρ = ∣Φ⟩⟨Φ∣ = (
√

3
2 ∣1⟩a∣1⟩b +

3
10 ∣1⟩a∣2⟩b +

2
5 ∣2⟩a∣2⟩b) (

√

3
2 ⟨1∣a⟨1∣b +

3
10⟨1∣a⟨2∣b +

2
5⟨2∣a⟨2∣b)

As ugly as ∣Φ⟩ is, it’s still a single state in A ⊗B and that means that ρ = ∣Φ⟩⟨Φ∣ is a
pure state.

The partial trace of a purification is the original density matrix. So to verify that ρ is
the purification of ρa, we need to take the trace over B of ρ.
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ρa = Trb[ρ]

= ⟨1∣bρ∣1⟩b + ⟨2∣bρ∣2⟩b

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⟨1∣b (
√

3
2 ∣1⟩a∣1⟩b +

3
10 ∣1⟩a∣2⟩b +

2
5 ∣2⟩a∣2⟩b) (

√

3
2 ⟨1∣a⟨1∣b +

3
10⟨1∣a⟨2∣b +

2
5⟨2∣a⟨2∣b) ∣1⟩b

+ ⟨2∣b (
√

3
2 ∣1⟩a∣1⟩b +

3
10 ∣1⟩a∣2⟩b +

2
5 ∣2⟩a∣2⟩b) (

√

3
2 ⟨1∣a⟨1∣b +

3
10⟨1∣a⟨2∣b +

2
5⟨2∣a⟨2∣b) ∣2⟩b

= (
√

3
2 ∣1⟩a + 0 + 0) (

√

3
2 ⟨1∣a + 0 + 0) + (0 + 3

10 ∣1⟩a +
2
5 ∣2⟩a) (0 + 3

10⟨1∣a +
2
5⟨2∣a)

= 3
4 ∣1⟩a⟨1∣a + ( 3

10 ∣1⟩a +
2
5 ∣2⟩a) (

3
10⟨1∣a +

2
5⟨2∣a)

= 3
4 ∣1⟩a⟨1∣a +

1
4 (

3∣1⟩a+4∣2⟩a
5 ) (

3⟨1∣a+4⟨2∣a
5 )

The system works!

∎

Undisclosed Measurements

An observable is a set of projective operations, Pk, with corresponding probabilities pk.
Given the state ∣ψ⟩ or density matrix ρ the probability of each result and the effect are

pk = ⟨ψ∣Pk∣ψ⟩ = Tr [Pkρ] ∣ψ⟩
k
Ð→ ∣ψk⟩ =

Pk∣ψ⟩
√
pk

ρ
k
Ð→ ρk =

PkρPk

pk

But what happens if a measurement is made, but not reported? The best you can say
is that the state or density matrix is one of {∣ψk⟩} or {ρk} and that the probability of that
result is pk. Fortunately, we already have a way to describe probability distributions over
quantum states: another density matrix!

The effect of an unrevealed observable, with projection operators {Pk}, is

ρÐ→ ρ′ =∑
k

pkρk =∑
k

PkρPk

It may occur to you that for projective measurements ∑k Pk = I and therefore the right
side should be equal to ρ. That would be the case if the right side were (∑j Pj)ρ (∑k Pk) =

∑jk PjρPk. As it is, the right side describes a “chopping up” of the density matrix that
destroys any coherence between the ranges of the different projection operations.
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Example The state ∣ψ⟩ =
3∣0⟩+4i∣1⟩

5 is measured in the computational basis, but the
result is not reported. What is the resulting density matrix?

The projection operators for a measurement in the computational basis are P0 = ∣0⟩⟨0∣

and P1 = ∣1⟩⟨1∣. The pure state density matrix for ∣ψ⟩ =
3∣0⟩+4i∣1⟩

5 is

ρ = (
3∣0⟩ + 4i∣1⟩

5
)(

3⟨0∣ − 4i⟨1∣

5
)

The result of the unreported measurement is

ρ′ = P0ρP0 + P1ρP1

= ∣0⟩⟨0∣ (
3∣0⟩+4i∣1⟩

5 ) (
3⟨0∣−4i⟨1∣

5 ) ∣0⟩⟨0∣ + ∣1⟩⟨1∣ (
3∣0⟩+4i∣1⟩

5 ) (
3⟨0∣−4i⟨1∣

5 ) ∣1⟩⟨1∣

= ∣0⟩ (3
5
) (3

5
) ⟨0∣ + ∣1⟩ (4i

5
) (−4i

5
) ⟨1∣

= 9
25 ∣0⟩⟨0∣ +

16
25 ∣1⟩⟨1∣

∎

Von Neumann Entropy

The Shannon entropy, which describes the entropy of classical probability distributions,
{p1, p2, . . .} = {pk}, is given by

H [{pk}] = −∑
k

pk log (pk)

We can describe a classical probability distribution by using a set of orthogonal states,
{∣k⟩}. This describes a classical situation because we think of classical states as being
distinguishable from each other. For example, if you roll a die, the probability of having
a 5 but observing a 2 is zero, which is exactly what we expect from orthogonal states:
p = ∣⟨2∣5⟩∣2 = 0.

Given a classical probability distribution, {pk}, we can use the ensemble {pk, ∣k⟩} and
the associated density matrix

ρ =∑
k

pk∣k⟩⟨k∣

The trace1 sums over diagonal terms and it’s easy to apply functions to diagonal ma-
trices.

1Here we use the shortcut mentioned in lecture 6: “The trace turns outer products into inner products.”
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−Tr [ρ log(ρ)] = −Tr [∑
k

pk log (pk) ∣k⟩⟨k∣] = −∑
k

pk log (pk) ⟨k∣k⟩ = −∑
k

pk log (pk) =H [{pk}]

So we have a formula for density matrices that recreates the Shannon entropy for
classical probability distributions. Since density matrices are always hermitian, an arbitrary
ρ = ∑k pk∣ψk⟩⟨ψk∣ has a spectral decomposition

ρ =∑
j

pj ∣ψj⟩⟨ψj ∣ =∑
k

λk∣vk⟩⟨vk∣

where λk are the eigenvalues and {∣vk⟩} are orthonormal eigenstates. So ρ is also
the density matrix for the ensemble {p(∣vk⟩) = λk}k, which is composed of distinguishable
(orthogonal) states.

We define the Von Neumann Entropy as

S[ρ] ≡ −Tr [ρ log[ρ]] = −∑
k

λk log (λk)

Notice that, because the trace permutes, it doesn’t matter what basis we use.2

S[UρU †] = −Tr [UρU † log[UρU †]]

= −Tr [UρU †U log[ρ]U †]

= −Tr [U †UρU †U log[ρ]]

= −Tr [ρ log[ρ]]

= S[ρ]

Example Find the Von Neumann Entropy for the ensemble

{p(∣1⟩) =
1

4
, p(

∣2⟩ + i∣3⟩
√

2
) =

1

2
, p(

∣2⟩ − i∣3⟩
√

2
) =

1

4
}

The density matrix is

2Here we a clever trick for Taylor polynomials and similarity transforms. Because (UMU†)n =
UMU†UMU†UMU† . . . UMU† = UMnU†, wherever the Taylor polynomial converges f (UMU†) =
∑n an (UMU†)n = U (∑n anM

n)U† = Uf(M)U†.
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ρ = 1
4 ∣1⟩⟨1∣ +

1
2 (
∣2⟩+i∣3⟩
√

2
) (
⟨2∣−i⟨3∣
√

2
) + 1

4 (
∣2⟩−i∣3⟩
√

2
) (
⟨2∣+i⟨3∣
√

2
)

= 1
4 ∣1⟩⟨1∣ +

1
4 (∣2⟩⟨2∣ − i∣2⟩⟨3∣ + i∣3⟩⟨2∣ + ∣3⟩⟨3∣) + 1

8 (∣2⟩⟨2∣ + i∣2⟩⟨3∣ − i∣3⟩⟨2∣ + ∣3⟩⟨3∣)

= 1
4 ∣1⟩⟨1∣ +

3
8 ∣2⟩⟨2∣ −

1
8 i∣2⟩⟨3∣ +

1
8 i∣3⟩⟨2∣ +

3
8 ∣3⟩⟨3∣

∼

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
4 0 0

0 3
8 −1

8 i

0 1
8 i

3
8

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Since S[ρ] ≡ −Tr [ρ log[ρ]] = −∑k λk log (λk), we need to find the eigenvalues of this
matrix.

C(λ) =

RRRRRRRRRRRRRRRRRR

1
4 − λ 0 0

0 3
8 − λ −1

8 i

0 1
8 i

3
8 − λ

RRRRRRRRRRRRRRRRRR

= (1
4 − λ)

RRRRRRRRRRR

3
8 − λ −1

8 i

1
8 i

3
8 − λ

RRRRRRRRRRR

= (1
4 − λ) [(

3
8 − λ) (

3
8 − λ) − (1

8 i) (−
1
8 i)]

= − (λ − 1
4
) [λ2 − 3

4λ +
9
64 −

1
64

]

= − (λ − 1
4
) [λ2 − 3

4λ +
1
8
]

= − (λ − 1
4
) (λ − 1

4
) (λ − 1

2
)

We have that the eigenvalues are λ = 1
2 ,

1
4 ,

1
4 and therefore

S[ρ] = −
1

2
log2 (

1

2
) −

1

4
log2 (

1

4
) −

1

4
log2 (

1

4
) =

1

2
+

2

4
+

2

4
=

3

2

∎

Properties of Von Neumann Entropy

The “relative entropy” is a quantity which, on its own, isn’t terribly useful, but which
is very useful for proofs.

S[ρ∥σ] ≡ Tr[ρ log[ρ]] − Tr[ρ log[σ]]
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Klein’s inequality3 says that for any density matrices, ρ and σ, defined on the same
space

0 ≤ S[ρ∥σ]

where equality only occurs for ρ = σ (the relative entropy between a state and itself is
zero).

Entropy is bound from below by pure states and from above by completely
mixed states.

0 ≤ S[ρ] ≤ log(d)

The entropy is positive and only zero for pure states. Like Shannon entropy, Von
Neumann entropy is maximized by equally probable orthogonal states, a “completely
mixed state”, ρ = 1

dI. In other words,

0 = S[∣ψ⟩⟨ψ∣] ≤ S[ρ] ≤ S [
1

d
I] = log(d)

The lower bound is trivial; the probability distribution for a pure state is p = 1 and so
S[∣ψ⟩⟨ψ∣] = −1 log2(1) = 0.

We can prove the (fairly reasonable) upper bound using Klein’s inequality. Remember
that Tr[ρ] = 1.

0 ≤ S [ρ∥1dI]

0 ≤ Tr[ρ log[ρ]] − Tr [ρ log [1
dI]]

0 ≤ Tr[ρ log[ρ]] − Tr [ρ log (1
d
) I]

0 ≤ Tr[ρ log[ρ]] − log (1
d
)Tr [ρ]

0 ≤ Tr[ρ log[ρ]] − log (1
d
)

−Tr[ρ log[ρ]] ≤ log (d)

S[ρ] ≤ log (d)

3I don’t include the proof of Klein’s inequality here because it’s long, algebraic, and unenlightening. It
essentially boils down to “log is concave” and then a lot of work.

7



Klein’s inequality is an equality if and only if the arguments are equal, so this maximum
occurs for ρ = 1

dI.
QED

Von Neumann Entropy is Subadditive.

S[ρab] ≤ S[ρa] + S[ρb]

We can prove this quickly using Klein’s inequality, 0 ≤ S[ρ∥σ], with ρ = ρab and σ =

ρa ⊗ ρb:

0 ≤ S[ρ∥σ]

0 ≤ Tr[ρab log[ρab]] − Tr[ρab log[ρa ⊗ ρb]]

−Tr[ρab log[ρab]] ≤ −Tr[ρab log[ρa ⊗ ρb]]

S[ρab] ≤ −Tr[ρab log[ρa ⊗ ρb]]

S[ρab] ≤ −Tr [ρab log[ρa]⊗ Ib + ρabIa ⊗ log[ρb]]

S[ρab] ≤ −Tr [ρab log[ρa]⊗ Ib] − Tr [ρabIa ⊗ log[ρb]]

S[ρab] ≤ −Tra [ρa log[ρa]] − Trb [ρb log[ρb]]

S[ρab] ≤ S[ρa] + S[ρb]

The trace without a subscript is a trace over all spaces, so when Tr → Tra we’ve taken
a trace over B, but haven’t yet taken the trace over A. Remember that whenever you
apply a function to a diagonalized matrix (the spectral decomposition), you can just apply
it to each diagonal term. This helps explain the biggest algebraic jump, expanded here:

log [ρa ⊗ ρb] = log [(∑j pj ∣j⟩a⟨j∣a) (∑k qk∣k⟩b⟨k∣b)]

= log [∑jk pjqk∣j⟩a∣k⟩b⟨j∣a⟨k∣b]

= ∑jk log(pjqk)∣j⟩a∣k⟩b⟨j∣a⟨k∣b

= ∑jk (log(pj) + log(qk)) ∣j⟩a∣k⟩b⟨j∣a⟨k∣b

= ∑jk log(pj)∣j⟩a∣k⟩b⟨j∣a⟨k∣b +∑jk log(qk)∣j⟩a∣k⟩b⟨j∣a⟨k∣b

= (∑j log(pj)∣j⟩a⟨j∣a) (∑k ∣k⟩b⟨k∣b) + (∑j ∣j⟩a⟨j∣a) (∑k log(qk)∣k⟩b⟨k∣b)

= log[ρa]⊗ Ib + Ia ⊗ log[ρb]
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QED

Knowing vs. not knowing which state you’re looking at. Suppose that you
want to deal with randomly chosen density matrices, where p(ρk) = pk. A good way
to declare that “someone has kept track of which density matrix is which” is to use
S [∑k pk∣k⟩⟨k∣⊗ ρk]. This describes, for example, the situation of Alice picking states
among {ρk} and sending them to Bob. Alice knows which state she sent, so Alice’s system
includes a “pointer state”, ∣k⟩, indicating which ρk was sent to Bob. So the system as a
whole isn’t in the state ∑k pkρk, it’s in ∑k pk∣k⟩⟨k∣⊗ ρk, because that “which state” infor-
mation is accessible. If you were to make a measurement like asking Alice which state she
sent, you’d find that pk is the probability of seeing ∣k⟩ and the state would “collapse” to

∑
k

pk∣k⟩⟨k∣⊗ ρk Ð→ ∣k⟩⟨k∣⊗ ρk

Here, a measurement of first space resulting in ∣k⟩⟨k∣ reveals which density matrix was
selected, and the entropy of this selection is H({pk}). After that selection we then have
the entropy of the density matrix itself, S[ρk]. We find that the entropy of this situation
is:

S [∑
k

pk∣k⟩⟨k∣⊗ ρk] =H({pk}) +∑
k

pkS[ρk]

where the right side should look a little familiar from lecture 7; the entropy of selecting
one of many scenarios plus the average entropy of those scenarios.

Each density matrix has its own spectral decomposition, ρk = λkj ∣vkj⟩b⟨vkj ∣b, so we’ll use
{∣k⟩a∣vkj⟩b}jk as a basis for A⊗B. Despite being funny looking, this is still an orthonormal

basis.

S [∑k pk∣k⟩⟨k∣⊗ ρk] = −∑jk pkλjk log (pkλjk)

= −∑jk pkλjk log (pk) −∑jk pkλjk log (λjk)

= −∑k (∑j λjk)pk log (pk) −∑k pk (∑j λjk log (λjk))

= −∑k pk log (pk) +∑k pkS[ρk]

= H ({pk}) +∑k pkS[ρk]
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QED

If on the other hand there’s no way to keep track of which density matrix is being
selected, we’re left looking at S [∑k pkρk] instead of S [∑k pk∣k⟩⟨k∣⊗ ρk].

Defining ρab = ∑k pkρk ⊗ ∣k⟩⟨k∣ we find that the reduced density matrices are

ρab =∑
k

pkρk ⊗ ∣k⟩⟨k∣ ⇒ ρa =∑
k

pkρk ρb =∑
k

pk∣k⟩⟨k∣

and applying subadditivity,

S [∑
k

pkρk ⊗ ∣k⟩⟨k∣] ≤ S [∑
k

pkρk] + S [∑
k

pk∣k⟩⟨k∣] = S [∑
k

pkρk] +H[{pk}]

then plugging in the result from above

H({pk}) +∑
k

pkS[ρk] ≤ S [∑
k

pkρk] +H[{pk}]

we find that

∑
k

pkS[ρk] ≤ S [∑
k

pkρk]
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Exercises

#1) The New Entropy.

a) Find the Von Neumann Entropy in bits for this ensemble.

p (∣1⟩) =
1

2
p (∣2⟩) =

1

6
p(

−3i∣2⟩ + 4∣3⟩

5
) =

1

3

b) In the computational basis, ρ ∼

⎡
⎢
⎢
⎢
⎢
⎣

1
2 −1

2

−1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎦

. What is S[ρ]?

c) What does the answer to part b tell you about ρ? Can you find an ensemble for this
density matrix?

#3) Keeping Track And Then Not.

ρ1 =
1

2
∣0⟩⟨0∣ +

1

2
∣1⟩⟨1∣ ρ2 = ∣

π

6
⟩⟨
π

6
∣ = (

√
3∣0⟩ + ∣1⟩

2
)(

√
3⟨0∣ + ⟨1∣

2
)

Alice is sending photons to Bob in one of these two density matrices, where p(ρ1) =

p(ρ2) =
1
2 .

Verify that the two equations

S [∑
k

pk∣k⟩⟨k∣⊗ ρk] =H({pk}) +∑
k

pkS[ρk]

and

S [∑
k

pkρk] ≥∑
k

pkS[ρk]

hold in this situation.

#4) Unmixing.

Find a purification for the density matrix

ρ =
1

3
∣0⟩⟨0∣ +

1

2
∣1⟩⟨1∣ +

1

6
∣−⟩⟨−∣
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#4) Lots of Ways to be Pure.

Assume that ∣Φ⟩ = ∑k
√
pk∣ψk⟩a∣k⟩b is a purification for ρa = ∑k pk∣ψk⟩a⟨ψk∣a. Here B is

assumed to have the basis {∣k⟩b}. Show that if another basis, {∣k′⟩b}, for the space B is
related to the first by a unitary operation on B, ∣k′⟩b = Ub∣k⟩b, then

∣Φ′
⟩ = (Ia ⊗Ub) ∣Φ⟩

is also a purification for ρa.

This problem is about forcing you to carefully apply operators on a composite space and
to know the properties of unitary operators.
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