QI Lecture 13

Quantum Fourier Transform

In physics we get to play around with Fourier! Transforms at first in the context of
position and momentum, where we use it to translate back and forth between the position
and momentum wave functions, or indeed when studying waves in general. The Fourier
Transform translates a signal into the frequencies of that signal. So for example, if a signal
is constant, then its Fourier transform is concentrated at zero.
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Figure 1: If f(t) describes the physical back-and-forth movement of sound waves, then
the keys of a piano are like the Fourier Transform, f(k), describing the frequencies of that
sound.

If z; is a sequence of complex numbers, then X, the terms in the sequence of the
Discrete Fourier Transform, are given by
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Parseval’s Theorem says that, if z; and y; are sequences with discrete Fourier transforms
X, and Y}, then
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“Fourier” is pronounced “4 E yay”, because Monsieur Jean-Baptiste Joseph Fourier was very French.



This looks a lot like a comparison of the inner products before and after the DFT and,
except for that % term, they’re equal. In this class we’re interested in the coefficients of
states rather than sequences of numbers.

Quantum Fourier Transform

By taking into account that + term we can define the Quantum Fourier Transform
(QFT) as a unitary operatlon Rather than write “QFT”, we’ll use F to represent the
QFT. On each basis state:
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and therefore for any given state |¢)) = Z]]\i ajlj) the QFT is
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The matrix for the QFT thus has a fairly simple form. If the basis of the state space
is {|0),]1),12),...,|[N-1)} andw =e %, then
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We may sometimes use Fy to indicate the dimension of the space, whenever it isn’t
obvious from context.
Parseval’s theorem tells us that for any pair of states,
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which is a defining characteristic of unitary operators.

The QFT has an inverse operation called, not surprisingly, the “Inverse Quantum
Fourier Transform”.
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Notice that the only difference between F and F~! is a negative in the exponent. That’s
because, as a unitary operator,
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Switching j < k makes no difference here, since these are just indices (dummy vari-

ables).

From now on we’ll assume that IV = 2", because this permits us to use the “fast Fourier
transform” (which is easy to implement with a circuit) and because it’s a natural result of
using n qubits.

We find that it’s useful to write
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where z1x4...x, is the binary expansion of z. In other words,
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Example Find the QFT of |®_) = | Q;_ ) = 2510} +0[1) + 0[2) - J53).2
There are two qubits here, so N = 22 = 4, and we have that ag = —a3 = % and
a1 = Q9 = 0.

2Here we’re taking advantage of “binary expansion notation”, so |3) = [1)[1).
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Example Demonstrate that the QFT preserves the normality of |¢) = %|O) - %|1) +

312) = 513).
First,
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Now we need to check that the same is true for the QFT, |1ﬁ)
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We find that [¢)) is also normal:
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What is the QFT?

The QFT maps superpositions of N states, {|0),]1),...,|N —1)}, to N states.
A good way to see how the QFT affects states is to write the coefficients as functions
of their indices like this:
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and write its QFT as
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Remember that the QFT maps N states, {|0),[1),...,|N - 1)}, to N states. The e NIk,
“kernel” implies that we should define the j in g(j) as a mod N number, j € Zy. Modular
arithmetic treats the numbers from 0 to N — 1 like a ring. For example, 2 -5= N -3 and
(N-4)+7=3.
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Mod N dovetails well with the QFT and helps things like this to make sense.
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In other words, Flg(j +¢N)) = F|g(j)) because g(j + ¢N) = g(j) for all j,¢.

In what follows, it will be useful to know the following useful identity.
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This is easy to show. For j # 0,
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We can actually generalize this a little.
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Find |G) = Flg).

g(7) is a simple wave, with angular frequency 27r%. The whole point of the QFT is the
detection and isolation of states like this.
Applying the definition of the QFT
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This is what the QFT does; it translates waves, |g) = \/—1_ ZN Le- itj|j), into points,
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Find |G) = Flg).

This time, |g) is a point. Applying the definition of the QFT
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we see that
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The QFT maps points to waves! [t) gets mapped to a wave with angular frequency
oL
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Given the last two examples (F maps waves to points and points to waves), what’s the
difference between F and F~! = F1? Is F its own inverse?
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Evidently,
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So the QFT (like any Fourier transform) is very similar to its own inverse; the original
g(7) is recovered, just in reverse order, g(N - 7).

Example

lg(j +h)) = Z g(j +h)lj)

Find the QFT.
Remember that the coefficients in the QFT are G(k) = ﬁ Zj]\iE)l g(j)e%jk.
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Since Flt) = % ZN ! %“ﬂk), we can write this as the product of two QFT's

Flg(G +h)) = [FI- M1 [Flg(G))]

In other words, shifting ¢g(j) multiplies the QFT with a wave.

|
Example Find the QFT of
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where % is an integer.

This is a string of states, spaced r apart and shifted by t. The even spacing implies a
simple frequency spectrum and simple QFT.
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Figure 2: 1) is the sum of states spaced r apart and shifted by ¢.
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This means that the QFT of a function that’s spaced r apart is another function spaced
N
= apart.
=

The QFT Circuit

We can write |k) = |k1)|k2) ... |kn) where k = k12" 1+ k92" 2+ .. . +k,_12+k, and this allows
us to get a sense of how to implement a QFT as a circuit by revealing what’s actually
happening to each individual qubit.
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Something very clever happens in that exponential when we look at the binary expan-
sion j = j12"7 1 459272 4 . j_12+ jn; the integer part? ofj2_£ disappears, since it produces
multiples of €2™. So as ¢ gets larger, more digits in j are pulled below the decimal point*
and are retained in the exponential.

n—-1=0

sz (1000 + 777 |1 ) ([0)2 + 27527 1)2) (0} + €792 1)) ...
% (|0)1 n 62m(jn271)|1>1) (|0>2 + eQm‘(jn_1271+jn272)|1)2) (|0>3 + ezm‘(jn_zrl+jn_1272+jn2—3)|1>3) N

on/

j1 only affects k,, jo only affects k,-1 and k,, and so on until j,, which makes an
appearance in every qubit in |k). So, we change j; into k, using a series of controlled phase

gates (see fig. 3)
1 0 ]
27
0 e2m

then repeat the process for jo — k,_1 and so on.

H plays the roll of a “self controlled R; gate”, since fort = 0,1, H|t) = % [10) + (-1)!|1)] =

[0y + e F11) .

We can see again that the QFT is unitary, every single one of its constituent gates is
unitary.

Ry, =

Phase Estimation

Suppose that there’s a unitary operator U with eigenstate |u) and eigenvalue

3The largest integer less than or equal to j27°.
4Technically “binary point”, since this is in base two. “Radix point” if you don’t want to specify the
base.
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Figure 3: The QFT circuit that maps |j) — 272 Y2 e 27 7¥|k).

A= e27rz<p

where ¢ € [0,1). We know that we can write A in this form because for unitary operators
[Al = 1.

The idea of the phase estimation algorithm is that U and whatever process prepares
|u) are “oracles”; black box functions that we don’t have access to. We have two registers

(sets of qubits). The first register begins with an ¢ qubits initialized to |0)®!, where t is

how many binary digits of ¢ we want to know. That is, we hope to learn ¢ to within 2—1,5

The second register is initialized to |u), which involves some unknown (and unimportant)
number of qubits.
The initial state of the system is

10)®u) =10)110)z .. .|0)e]ur)
and after the bank of Hadamard gates the system is

1
ooz 001+ 111 [[0)2 + [1)2]- - [I0)e + [1)¢]Jur)
or more succinctly, by using the binary expansion notation |z) = |z1)|x2) ... |z:),

1 2t-1
—= 2, [T)u)
2t/2 x;)

These controlled U gates do the following:

CU*(0)u) = [0 u) CUM1)]u) = (¢2772)" 1)}u) = e>49[1) u)
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Figure 4: The phase-estimation circuit.

Even with all the other qubits floating around, that coefficient stays stuck to the ap-
propriate state of the appropriate qubit. For example, look at the first CU gate, which is
controlled by the ¢ qubit:

CU [ [10)1 + W] [10)e=1 + [1)ea ] 10} + [1)e] )]
= g [0)1+ 1] [10)i-1 + 1) JCU[0)e +[1)e] fu)
) { 5 [10)1+[1)1]-. [[0)i-1 + [1)e-1] CUI0)¢ u)
L+ P00+ ][I0} + (1)1 ] CU LYl

i+ 1] [10)e-1 +[1)e-1]10)e|u)

+ M m [10)+ 1] [10)es + [1)e-a][1)efu)
= 5 [0)1+ 1] [10)e—1 + [1)e1] [10)e + > 1), ] u)

After all the controlled U2* gates the state of the system is

o2 2 2mi
55 = [0y + Ay | [lo)e + 271y, ] [j0)s + 7 1),] Ju)
or using the binary expansion notation and noting that = = 212/ +2922+. . +2! 12+,
2t-1

1 .
7 & )
z=0
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We can ignore the second register, since we always know exactly what it is. Notice
that the coefficients of the first register follow a very simple pattern and are described by
a single frequency. Writing the coefficients using Fuler’s identity

> = cos (2mpx) + i sin (2mpx)

we see that ¢ is the frequency (27 is the angular frequency). Because the frequency
spectrum is so simple, the QFT is an obvious tool to use. While 2% Ziﬁl 2P| is
evenly spread out over all the |z) states, we can expect the QFT to be highly concentrated.

If we write the first register as

-1 27i t
2
2t/2 E e s "9

then it looks suspiciously like the QFT of [2'p)! In fact, if  has a binary expansion no
longer than ¢ digits, then that’s exactly what this is. We’ll ignore the second register, |u),
since we know exactly what it is and there’s nothing more to gain from it.

The inverse quantum Fourier transform of the first register yields

1212m 12’517 21 (o1 2t-1 12f—1@t_
FTLt/z Zeﬂ ] > e m e @)y - 5 5 o en ey

z,y=0 y=0 z=0

As messy as it is, the coefficient in front of every |y) is a geometric series. The probability
of

1- 27Ti(2t(p—y) 2

2mi

2
Zthr fo-y)

This is as simple as this is going to get, but we can bound the numerator from below
and denominator from above to find a lower bound for p(|k)). Assume that

1

p(ly)) 1

1
|2tg0—y| < 5

meaning that 2 57 is the closest ¢-digit binary approximation to ¢; if you round off 2o,
you get y.

Note that |1 - e| = 2[sin (§)] = 25111(‘ |) and that for z € [-Z, 2] we have 2|z| <sin|z| <
|z]. So when 6 € [-7, 7]

z|0|s|1—e"9\g|9|
T

Therefore, since 27 (2tg0 - y) <27 (%) =,
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1- e27ri(2t<pfy) 4

= 24t

2T (2t<p - y)
1- e%@t%@—y)

2 (2t90 - y)
T (2o -y)

4
o224t

4

T2

Pl =

1— e%@t@—y)

4
p(best approzimation) > — ~0.405
T

This means that the phase estimation circuit yields the best t-digit binary approxima-
tion for ¢ at least 40% of the time. So we can’t expect this to work perfectly the first time,
but if you repeat the procedure several times, the result you get most (and at least 40% of

i X
the total after many runs) is the best approximation of 2!y, and therefore 627”(2’5) is the
best approximation of \ = e2™%.
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Exercises

#1) Patterns.
Find the QFT of each given state in the space with the basis {|0),[1),...,[7)}.

Hint: It’s will be quicker to do these calculations if you use w = egl, instead of writing
out the exponential every time, and if you keep in mind that sums of numbers equally-spaced

around the unit circle are zero (e.g., W +w? + w* + WO =1+i+ (=1) +(=i) =0).

)
1 1 1 1 1 1 1 1
€)= ﬁm) + ﬁm + ﬁ@) + %\3) + ﬁ|4> + ﬁ|5) + ﬁl6> + %W)
b)
)= 5100+ 52} + 14} + 26)
° 1 1
)= —510) + = H4)
2

e) What patterns do you notice?

#2) Unitarity.
Show that the QFT is unitary by direct calculation.

#3) Estimaser.

Assume you’ve run the phase estimation algorithm several times and gotten the results:
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What is your best guess for the eigenvalue, A7

#4) N to Beam Up.

Teleportation doesn’t just work for qubits, it works for “qudits” (quantum systems of
d dimensions) as well. Suppose we want to teleport an N-dimensional quantum state,
[1)a = SN0L aglk)a, from space A to C. Using entangled states of the form

1 N-
Xetdbe = —= 3 e X9 lj @ 1),
SO
These will take the place of the Bell states for our more general teleportation procedure.

Here j @t is addition mod N Notice that e ¥ (@®) = ¢’ (a+0) gince multiples of N can be

27” 27
ignored in this exponent: e N (a0D) _ o5 (arbHiN) _ o5 (avd) pl2mi,

(a) Show that

<Xs,t‘Xs’,t’> = 55,5’5t,t’

b) We start with the state

‘w>a|Xs,t>bc

Find the possible results from a measurement of A ® B in the {|xs)} basis. In other
words, calculate:

<Xa:,y|ab (|¢)a|Xs,t)bc)

c¢) Using the result of the measurement in part b, find the unitary transformation that
will reconstruct the state |¢)) on C. This unitary operation will depend on the indices of
both the initial entangled state, |xs)be, and the result of the measurement, [Xzy)ab-
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(Hint: First ask yourself “How do I fix the ket?” then ask yourself “How do I fix the
phase?”)
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