
QI Lecture 14

The Grover Search Algorithm

The Grover Search Algorithm is the first arguably useful quantum algorithm we’ll be
looking at. The problem is to find one item out of N from an unsorted database. A better
way to picture this is trying to find a bean that’s hidden under one of many shells.

Figure 1: The classical solution for searching an unsorted database.

Grover

We describe the Grover algorithm using another blackbox function

f(x) = {
1, x = x0
0, x ≠ x0

where 0 ≤ x ≤ N − 1 and our goal is to find x0. We’ll define two states

∣w0⟩ =
1

√
N

N−1

∑
j=0

∣j⟩ ∣x0⟩

1

where ∣w0⟩ is the simplest superposition of all the inputs and ∣x0⟩ is the target of the
search. Because we’ll need it in a minute, the inner product of these states is

⟨x0∣w0⟩ =
1

√
N

N−1

∑
j=0

⟨x0∣j⟩ =
1

√
N

N−1

∑
j=0

δx0j =
1

√
N

With these two states we can define two operations

U0 = I − 2∣w0⟩⟨w0∣ Uf = I − 2∣x0⟩⟨x0∣

Uf can also be written Uf ∣x⟩ = (−1)f(x)∣x⟩. U0 is called the “diffusive operator” and
Uf is the “function call” or “oracle”.

Grover’s algorithm is the repeated application of Q = −U0Uf , causing the initial state
∣w0⟩ to evolve into ∣x0⟩. Notice what Q does to ∣ψ⟩ = α∣w0⟩ + β∣x0⟩ ∈ Span{∣w0⟩, ∣x0⟩}

Q [α∣w0⟩ + β∣x0⟩] = − (I − 2∣w0⟩⟨w0∣) (I − 2∣x0⟩⟨x0∣) [α∣w0⟩ + β∣x0⟩]

= − (I − 2∣w0⟩⟨w0∣) [α∣w0⟩ − α
2√
N
∣x0⟩ − β∣x0⟩]

= − (I − 2∣w0⟩⟨w0∣) [α∣w0⟩ − (α 2√
N
+ β) ∣x0⟩]

= − [−α∣w0⟩ − (α 2√
N
+ β) ∣x0⟩ + (α 2√

N
+ β) 2√

N
∣w0⟩]

= (α (1 − 2√
N
) − β) 2√

N
∣w0⟩ + (α 2√

N
+ β) ∣x0⟩

Details aside, Q [α∣w0⟩ + β∣x0⟩] ∈ Span{∣w0⟩, ∣x0⟩} which means that we don’t have to
worry about an N dimensional space, we can just focus on the two dimensional space
S ≡ Span{∣w0⟩, ∣x0⟩}. In fact, if α,β ∈ R, then we can treat S as a real two dimensional
space, meaning that we can talk about angles and draw pictures!

In particular, since the space is two dimensional, we can define ∣x⊥0⟩ as the component
of ∣w0⟩ perpendicular to ∣x0⟩.

1 The form ∣x⊥0⟩ takes turns out to be simple enough that it
should seem obvious after the calculation is done.2

1Since S = Span{∣x0⟩, ∣w0⟩}, using ∣w0⟩ to define ∣x⊥0⟩ is the only option. There are no other directions
to work with.

2But it’s still better not to guess.

2

Figure 2: Left: The anatomy of S = Span{∣w0⟩, ∣x0⟩}, where θ is the angle between ∣w0⟩

and ∣x⊥0⟩. Right: Restricted to S, Q∣ψ⟩ is a reflection over ∣x⊥0⟩ followed by a reflection over
∣w0⟩, amounting to a rotation by 2θ.

∣x⊥0⟩ =
∣w0⟩−∣x0⟩⟨x0∣w0⟩

∥∣w0⟩−∣x0⟩⟨x0∣w0⟩∥

=
∣w0⟩−∣x0⟩⟨x0∣w0⟩√

⟨w0∣w0⟩−2⟨w0∣x0⟩⟨x0∣w0⟩+⟨w0∣x0⟩⟨x0∣w0⟩

=
∣w0⟩−

1
√

N
∣x0⟩

√
1− 1

N

=

√
N
N−1 (1√

N
∑
N−1
x=0 ∣x⟩ − 1√

N
∣x0⟩)

= 1√
N−1
∑x≠x0 ∣x⟩

Uf flips the sign on the component of a vector in the ∣x0⟩ direction, so it’s a reflection
over ∣x⊥0⟩. Similarly, −U0 (note the negative) flips the sign on the component of a vector in
the ∣w⊥0 ⟩ direction, so it’s a reflection over ∣w0⟩. It turns out that two sequential reflections
over intersecting lines is a rotation about their point of intersection by twice the angle
between them in the direction pointing from the first line to the second. This is an old
geometric fact and proving it is exactly as hard as just looking at what Q = −U0Uf does to
an arbitrary state. Define

∣φ⟩ ≡ cos(φ)∣x⊥0⟩ + sin(φ)∣x0⟩

In this notation ∣π2 ⟩ = ∣x0⟩ and we define the angle θ with

3

∣w0⟩ ≡ ∣θ⟩ = cos(θ)∣x⊥0⟩ + sin(θ)∣x0⟩

We’re now equipped to look at the effect of Q on the arbitrary state ∣φ⟩ = cos(φ)∣x⊥0⟩ +
sin(φ)∣x0⟩. First applying Uf :

Uf ∣φ⟩ = (I − 2∣x0⟩⟨x0∣) [cos(φ)∣x⊥0⟩ + sin(φ)∣x0⟩]

= cos(φ)∣x⊥0⟩ + sin(φ)∣x0⟩ − 2 cos(φ)∣x0⟩⟨x0∣x
⊥
0⟩ − 2 sin(φ)∣x0⟩⟨x0∣x0⟩

= cos(φ)∣x⊥0⟩ − sin(φ)∣x0⟩

= cos(−φ)∣x⊥0⟩ + sin(−φ)∣x0⟩

This is a reflection over ∣x⊥0⟩. Now applying U0:
3

U0Uf ∣φ⟩ = (I − 2∣w0⟩⟨w0∣) [cos(φ)∣x⊥0⟩ − sin(φ)∣x0⟩]

= cos(φ)∣x⊥0⟩ − sin(φ)∣x0⟩ − 2 cos(φ)∣w0⟩⟨w0∣x
⊥
0⟩ + 2 sin(φ)∣w0⟩⟨w0∣x0⟩

= cos(φ)∣x⊥0⟩ − sin(φ)∣x0⟩ − 2 cos(θ) cos(φ)∣w0⟩ + 2 sin(θ) sin(φ)∣w0⟩

= cos(φ)∣x⊥0⟩ − sin(φ)∣x0⟩ + [−2 cos(θ) cos(φ) + 2 sin(θ) sin(φ)] ∣w0⟩

= cos(φ)∣x⊥0⟩ − sin(φ)∣x0⟩ + [−2 cos(θ) cos(φ) + 2 sin(θ) sin(φ)] [cos(θ)∣x⊥0⟩ + sin(θ)∣x0⟩]

=

⎧⎪⎪
⎨
⎪⎪⎩

[cos(φ) − 2 cos2(θ) cos(φ) + 2 sin(θ) cos(θ) sin(φ)] ∣x⊥0⟩

+ [− sin(φ) − 2 sin(θ) cos(θ) cos(φ) + 2 sin2(θ) sin(φ)] ∣x0⟩

=

⎧⎪⎪
⎨
⎪⎪⎩

[− cos(φ) cos(2θ) + sin(2θ) sin(φ)] ∣x⊥0⟩

+ [− sin(φ) cos(2θ) − sin(2θ) cos(φ)] ∣x0⟩

= − cos(φ + 2θ)∣x⊥0⟩ − sin(φ + 2θ)∣x0⟩

Finally,

Q∣φ⟩ = −U0Uf ∣φ⟩ = cos(φ + 2θ)∣x⊥0⟩ + sin(φ + 2θ)∣x0⟩

which is a reflection of cos(−φ)∣x⊥0⟩ + sin(−φ)∣x0⟩ over ∣w0⟩. This means that,

Qn∣w0⟩ = cos(θ + 2nθ)∣x⊥0⟩ + sin(θ + 2nθ)∣x0⟩

We want the state of the system to be as nearly equal to ∣x0⟩ as possible, so that
a measurement is almost guaranteed to produce that target state. This happens when

3By the way: cos(A + B) = cos(A) cos(B) − sin(A) sin(B), sin(2A) = 2 sin(A) cos(A), and cos(2A) =
cos2(A) − 1 = 1 − sin2

(A).

4

π
2 = (2n + 1)θ. Presumably N , the number of “shells to look under”, is large and that
means we can use the small-angle-approximation:

1
√
N

= ⟨x0∣w0⟩ = sin(θ) ≈ θ

Therefore, for large values of N , the number of times, n, that we apply Q before
measuring the state of the system is

n ≈
π

4

√
N

Quantum Walk Approach

In the usual approach to the Grover algorithm we switch back and forth between the
diffusive operator and the function call, but we can gain some insight by describing them
as a single operation on a more complicated space. In this case a “star graph”. Normally,
a classical random walk is described on the vertices of a graph, but we find that formalism
is insufficient for quantum walks4, so we find that if we define our walk on the edges and
put an operations on the vertices that a lot of problems clear up. We’ve actually seen
something very much like this before, in lecture 1 when we looked at light traveling down
paths (edges) and interacting at beam splitters (vertices). The state on an edge going from
vertex a to b is ∣a, b⟩ and the state going from b to a is ∣b, a⟩.

Figure 3: Left: A graph representing the Grover algorithm. States are defined on the
directed edges and operations are defined on the vertices. Right: A simplification of the
graph where all of the unmarked edges are collected together.

Rather than worry about two different operations, we’ll consider a single time-step
operation U . In figure 3 the “spokes” are the states that we need to search through and
when the vertices at the ends reflect edge states back they either leave the phase alone or,

4For example, if the state is on a particular vertex, then where was it one time-step ago? Generally an
ancillary “coin space” is added to each vertex to keep track of where a state was at the last time step (or
possibly quite a bit more).

5

for the marked vertex, multiply it by −1. In this way they execute the oracle operation on
outgoing states.

U ∣h, j⟩ = ∣j, h⟩ U ∣h,x0⟩ = −∣x0, h⟩

The h vertex at the center is the “hub vertex” and it performs the diffusive operation.
For any ingoing state

U ∣j, h⟩ = r∣h, j⟩ + t∑
k≠j

∣h, k⟩

Unitarity at the hub requires that ∣r∣2 + (N − 1)∣t∣2 = 1 and 2Re(r∗t) + (N − 2)∣t∣2 = 0
and the simplest solution is that the hub is a “standard diffusive vertex” meaning that

r = −1 +
2

N
t =

2

N

For ease of notation define the following:

∣in⟩ ≡
1

√
N − 1

∑
j≠x0

∣j, h⟩ ∣out⟩ ≡
1

√
N − 1

∑
j≠x0

∣h, j⟩

We can now restrict our attention to four states, ∣in⟩, ∣out⟩ on the left and ∣h,x0⟩, ∣x0, h⟩
on the right. Clearly,

U ∣out⟩ = ∣in⟩ U ∣h,x0⟩ = −∣x0, h⟩

but the hub vertex has become slightly more complicated.

U ∣x0, h⟩ = (−1 + 2
N
) ∣h,x0⟩ +

2
N ∑k≠x0 ∣h, k⟩

= (−1 + 2
N
) ∣h,x0⟩ +

2
√
N−1
N

1√
N−1
∑k≠x0 ∣h, k⟩

= (−1 + 2
N
) ∣h,x0⟩ + 2

√
1
N − 1

N2 ∣out⟩

U ∣in⟩ = 1√
N−1
∑j≠x0 U ∣j, h⟩

= 1√
N−1
∑j≠x0 [(−1 + 2

N
) ∣h, j⟩ + 2

N ∑k≠j ∣h, k⟩]

= (−1 + 2
N
) ∣out⟩ + 2

N
√
N−1
∑j≠x0∑k≠j ∣h, k⟩

= (−1 + 2
N
) ∣out⟩ + 2

N
√
N−1
∑j≠x0∑k≠j,x0 ∣h, k⟩ +

2

N
√
N−1
∑j≠x0 ∣h,x0⟩

= (−1 + 2
N
) ∣out⟩ +

2(N−2)

N
√
N−1
∑k≠x0 ∣h, k⟩ +

2(N−1)

N
√
N−1

∣h,x0⟩

= (−1 + 2
N
) ∣out⟩ + 2 (1 − 2

N
) ∣out⟩ + 2

√
1
N − 1

N2 ∣h,x0⟩

= (1 − 2
N
) ∣out⟩ + 2

√
1
N − 1

N2 ∣h,x0⟩

6

In the {∣out⟩, ∣in⟩, ∣h,x0⟩, ∣x0, h⟩} basis we can write U and it’s first order approximation

U =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 − 2
N 0 2

√
1
N − 1

N2

1 0 0 0

0 2
√

1
N − 1

N2 0 −1 + 2
N

0 0 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 2√
N

1 0 0 0

0 2√
N

0 −1

0 0 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+O (
1

N
)

as well as the eigenvalues and states

λ1 = e
i 1
√

N +O (1
N
) ∣v1⟩ =

∣out⟩+∣in⟩−i∣h,x0⟩+i∣x0,h⟩
2 +O (1√

N
)

λ2 = e
−i 1
√

N +O (1
N
) ∣v2⟩ =

∣out⟩+∣in⟩+i∣h,x0⟩−i∣x0,h⟩
2 +O (1√

N
)

λ3 = −e
i 1
√

N +O (1
N
) ∣v3⟩ =

∣out⟩−∣in⟩−i∣h,x0⟩−i∣x0,h⟩
2 +O (1√

N
)

λ4 = −e
−i 1
√

N +O (1
N
) ∣v4⟩ =

∣out⟩−∣in⟩+i∣h,x0⟩+i∣x0,h⟩
2 +O (1√

N
)

We’ll now restrict our attention to the λ1 ≈ λ2 ≈ 1 eigenstates. In the limit as N → ∞

something important happens:

U∞ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The weak coupling, 2√
N

, between the left and right sides of figure 3 disappears, the

eigenspaces become degenerate, λ1 = λ2 = 1, and initial conditions (such as this one)
become concentrated on the left side:

∣ψ⟩ ≡
1

√
2N

N−1

∑
j=0

[∣j, h⟩ + ∣h, j⟩] =

√
N − 1

N

∣in⟩ + ∣out⟩
√

2
+

1
√
N

∣x0, h⟩ + ∣h,x0⟩
√

2
Ð→

∣in⟩ + ∣out⟩
√

2
=

∣v1⟩ + ∣v2⟩
√

2

In the N = ∞ scenario, initial conditions remain on the left side because U∞ (
∣v1⟩+∣v2⟩√

2
) =

∣v1⟩+∣v2⟩√
2

. The 1-eigenspace is two dimensional, with one on both the left and right. As we

perturbate the variable 1
N from zero to small, non-zero values the eigenspaces “break apart”

and the new non-degenerate eigenspaces, Span{∣v1⟩} and Span{∣v2⟩} have support on both
the left and right.

The initial condition is still approximately equal to a linear combination of ∣v1⟩ and
∣v2⟩,

7

∣ψ⟩ =
1

√
2N

N−1

∑
j=0

[∣j, h⟩ + ∣h, j⟩] =
∣v1⟩ + ∣v2⟩

√
2

+O (
1

√
N

)

The big difference is that, now that the eigenvalues don’t match, these two eigenvectors
slowly migrate from adding together to subtracting. Applying U a total of n = π

2

√
N times:

Un∣ψ⟩ =
Un∣v1⟩+U

n∣v2⟩√
2

=
e
i n
√

N ∣v1⟩+e
−i n
√

N ∣v2⟩√
2

=
ei
π
2 ∣v1⟩+e

−i π2 ∣v2⟩√
2

=
i∣v1⟩−i∣v2⟩√

2

=
∣h,x0⟩−∣x0,h⟩√

2

Approximations here are accurate to within O (1√
N
).

So after n = π
2

√
N steps an initial condition spread across all of the “spokes” becomes

concentrated on the marked spoke and a measurement will reveal it with probability ap-
proximately 1. Properly read, this is the same number of steps that the first treatment
of Grover’s algorithm took, since it takes two steps for states to reflect off the ends of
the spokes (oracle operation) and to scatter off the hub (diffusive operation). In the first
iteration, these two operations are considered together, one after the other.

Optimality

The important thing to notice here is that n = O (
√
N)!! Classically, if there were a N = 106

shells to look under, you’d need to look under half, 500,000, on average before finding the
bean. “N2 ” scales proportionately to N , meaning that it’s O(N). Grovers algorithm would

only require about π
4

√
106 ≈ 785 steps to find the target shell. Because it scales proportional

to the square root of the size of the unsorted database, Grover’s algorithm becomes more
useful the larger the database.

I’m including this section because it’s rare to see a proof of the optimality of Grover,
although this is a well known fact (before the end of this section you’ll see why it’s so
rare). This also gives you an example of one of the more difficult problems in computation:
putting bounds on computational difficulty.

However, it would be nice to know if it’s possible to do any better. Define Ux = I−2∣x⟩⟨x∣,
which is the blackbox function targeting the state ∣x⟩. We’d like a search algorithm to work
after a fixed number of steps for any x, since we don’t know what x is.5 Each application

5That’s the whole point of a search.

8

of Ux is a function call, and in between them we’ll assume that we can apply any unitary
operation, Uj , that may change between calls. This is about as generalized as you can get.
With initial state ∣ψ0⟩, define

∣ψxj ⟩ = UjUxUj−1Ux . . . U1Ux∣ψ0⟩ ∣ψk⟩ = UjUj−1 . . . U1∣ψ0⟩

when the requisite number of function calls, j, has been met, we’d like the probability
of success to be at least 1

2 , so

∣⟨x∣ψxj ⟩∣
2
>

1

2

This is a fairly standard requirement for probabilistic algorithms which aren’t guaran-
teed to return a correct result. With a high enough probability, repeating the algorithm
several times makes it effectively non-probabilistic.

We’ll consider the quantity

Dj ≡ ∑
x

∥∣ψxj ⟩ − ∣ψj⟩∥
2

and by finding both upper and lower bounds for Dj we’ll establish the optimality of
Grover’s O(

√
N) speed. Dj doesn’t really mean anything useful; it’s just something to use

for this proof. This proof involves a lot of inequalities and identities, so they’ll be noted as
they’re used. As a reminder:

Triangle inequality: ∥∣η⟩ ± ∣φ⟩∥ ≤ ∥∣η⟩∥ + ∥∣φ⟩∥

Cauchy-Schwarz: ∣∑kAkBk∣ ≤ (∑j A
2
j)

1
2 (∑kB

2
k)

1
2

Unitarity: ∥U ∣φ⟩∥ = ∥∣φ⟩∥

Pythagoras: ∥∣φ⟩∥2 = ∥Ps∣φ⟩ + Ps⊥ ∣φ⟩∥
2 = ∥Ps∣φ⟩∥

2 + ∥Ps⊥ ∣φ⟩∥
2

Normality: ∑k ∣⟨k∣φ⟩∣
2
= 1

where Ps and Ps⊥ are projections onto orthogonal spaces.

9

Dj+1 = ∑x ∥∣ψ
x
j+1⟩ − ∣ψj+1⟩∥

2

= ∑x ∥Uj+1Ux∣ψ
x
j ⟩ −Uj+1∣ψj⟩∥

2

= ∑x ∥Uj+1 (Ux∣ψ
x
j ⟩ − ∣ψj⟩)∥

2

= ∑x ∥Ux∣ψ
x
j ⟩ − ∣ψj⟩∥

2
Unitarity

= ∑x ∥Ux (∣ψ
x
j ⟩ − ∣ψj⟩) + (Ux − I) ∣ψj⟩∥

2

≤ ∑x [∥Ux (∣ψ
x
j ⟩ − ∣ψj⟩)∥ + ∥(Ux − I) ∣ψj⟩∥]

2
Triangle

= ∑x [∥∣ψ
x
j ⟩ − ∣ψj⟩∥ + ∥(Ux − I) ∣ψj⟩∥]

2
Unitarity

= ∑x [∥∣ψ
x
j ⟩ − ∣ψj⟩∥ + ∥−2∣x⟩⟨x∣ψj⟩∥]

2
Ux = I − 2∣x⟩⟨x∣

= ∑x [∥∣ψ
x
j ⟩ − ∣ψj⟩∥ + 2 ∣⟨x∣ψj⟩∣ ∥∣x⟩∥]

2

= ∑x [∥∣ψ
x
j ⟩ − ∣ψj⟩∥ + 2 ∣⟨x∣ψj⟩∣]

2

= ∑x [∥∣ψ
x
j ⟩ − ∣ψj⟩∥

2
+ 4 ∥∣ψxj ⟩ − ∣ψj⟩∥ ∣⟨x∣ψj⟩∣ + 4 ∣⟨x∣ψj⟩∣

2
]

= Dj +∑x [4 ∥∣ψxj ⟩ − ∣ψj⟩∥ ∣⟨x∣ψj⟩∣ + 4 ∣⟨x∣ψj⟩∣
2
]

= Dj + 4 + 4∑x ∥∣ψ
x
j ⟩ − ∣ψj⟩∥ ∣⟨x∣ψj⟩∣ Normality

≤ Dj + 4 + 4 (∑x ∥∣ψ
x
j ⟩ − ∣ψj⟩∥

2
)

1
2
(∑x ∣⟨x∣ψj⟩∣

2
)

1
2 Cauchy − Schwarz

≤ Dj + 4 + 4 (∑x ∥∣ψ
x
j ⟩ − ∣ψj⟩∥

2
)

1
2

Normality

= Dj + 4
√
Dj + 4

We can use this to inductively show that

Dj ≤ 4j2

The base case isD1 = ∑x ∥U1Ux∣ψ0⟩ −U1∣ψ0⟩∥
2
= ∑x ∥Ux∣ψ0⟩ − ∣ψ0⟩∥

2
= ∑x ∥(Ux − I) ∣ψ0⟩∥

2
=

∑x ∥−2∣x⟩⟨x∣ψ0⟩∥
2
= ∑x 4 ∣⟨x∣ψ0⟩∣

2
= 4 and the inductive case is

Dj+1 ≤Dj + 4
√
Dj + 4 ≤ 4j2 + 8j + 4 = 4(j + 1)2

So that’s the upper bound. Here’s the lower bound.

We’ll use two perpendicular projections: Px = ∣x⟩⟨x∣ and Px⊥ = I − ∣x⟩⟨x∣.

10

∥∣ψxj ⟩ − ∣ψj⟩∥
2

= ∥Px (∣ψ
x
j ⟩ − ∣ψj⟩) + Px⊥ (∣ψ

x
j ⟩ − ∣ψj⟩)∥

2

= ∥Px (∣ψ
x
j ⟩ − ∣ψj⟩)∥

2
+ ∥Px⊥ (∣ψ

x
j ⟩ − ∣ψj⟩)∥

2
Pythagoras

= ∥∣x⟩ (⟨x∣ψxj ⟩ − ⟨x∣ψj⟩)∥
2
+ ∥Px⊥ (∣ψ

x
j ⟩ − ∣ψj⟩)∥

2

= ∣⟨x∣ψxj ⟩ − ⟨x∣ψj⟩∣
2
+ ∥Px⊥ (∣ψ

x
j ⟩ − ∣ψj⟩)∥

2

=

⎧⎪⎪
⎨
⎪⎪⎩

(⟨x∣ψxj ⟩ − ⟨x∣ψj⟩)
∗
(⟨x∣ψxj ⟩ − ⟨x∣ψj⟩)

+ (⟨ψxj ∣ − ⟨ψj ∣)Px⊥Px⊥ (∣ψ
x
j ⟩ − ∣ψj⟩)

=

⎧⎪⎪
⎨
⎪⎪⎩

(⟨x∣ψxj ⟩ − ⟨x∣ψj⟩)
∗
(⟨x∣ψxj ⟩ − ⟨x∣ψj⟩)

+ (⟨ψxj ∣ − ⟨ψj ∣)Px⊥ (∣ψ
x
j ⟩ − ∣ψj⟩)

P †
x⊥Px⊥ = P

2
x⊥ = Px⊥

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∣⟨x∣ψxj ⟩∣
2
+ ∣⟨x∣ψj⟩∣

2
− ⟨x∣ψxj ⟩⟨x∣ψj⟩

∗ − ⟨x∣ψxj ⟩
∗⟨x∣ψj⟩

+ ∥Px⊥ ∣ψ
x
j ⟩∥

2
+ ∥Px⊥ ∣ψj⟩∥

2
− ⟨ψj ∣Px⊥ ∣ψ

x
j ⟩ − ⟨ψxj ∣Px⊥ ∣ψj⟩

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∣⟨x∣ψxj ⟩∣
2
+ ∣⟨x∣ψj⟩∣

2
− 2Re [⟨x∣ψxj ⟩⟨x∣ψj⟩

∗]

+ ∥Px⊥ ∣ψ
x
j ⟩∥

2
+ ∥Px⊥ ∣ψj⟩∥

2
− 2Re [⟨ψj ∣Px⊥ ∣ψ

x
j ⟩]

≥

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∣⟨x∣ψxj ⟩∣
2
+ ∣⟨x∣ψj⟩∣

2
− 2 ∣⟨x∣ψxj ⟩∣ ∣⟨x∣ψj⟩∣

+ ∥Px⊥ ∣ψ
x
j ⟩∥

2
+ ∥Px⊥ ∣ψj⟩∥

2
− 2 ∣⟨ψj ∣Px⊥ ∣ψ

x
j ⟩∣

Re[A] ≤ ∣A∣

=

⎧⎪⎪
⎨
⎪⎪⎩

(∣⟨x∣ψxj ⟩∣
2
+ ∥Px⊥ ∣ψ

x
j ⟩∥

2
) + (∣⟨x∣ψj⟩∣

2
+ ∥Px⊥ ∣ψj⟩∥

2
)

− 2 ∣⟨x∣ψxj ⟩∣ ∣⟨x∣ψj⟩∣ − 2 ∣⟨ψj ∣Px⊥ ∣ψ
x
j ⟩∣

= ∥∣ψxj ⟩∥
2
+ ∥∣ψj⟩∥

2
− 2 ∣⟨x∣ψxj ⟩∣ ∣⟨x∣ψj⟩∣ − 2 ∣⟨ψj ∣Px⊥ ∣ψ

x
j ⟩∣ Pythagoras

= 2 − 2 ∣⟨x∣ψxj ⟩∣ ∣⟨x∣ψj⟩∣ − 2 ∣⟨ψj ∣Px⊥ ∣ψ
x
j ⟩∣

≥ 2 − 2 ∣⟨x∣ψxj ⟩∣ ∣⟨x∣ψj⟩∣ − 2 ∥∣ψj⟩∥ ∥Px⊥ ∣ψ
x
j ⟩∥ Cauchy − Schwarz

= 2 − 2 ∣⟨x∣ψxj ⟩∣ ∣⟨x∣ψj⟩∣ − 2 ∥Px⊥ ∣ψ
x
j ⟩∥

≥ 2 − 2 ∣⟨x∣ψj⟩∣ − 2 ∥Px⊥ ∣ψ
x
j ⟩∥

Because (by Pythagoras) ∣⟨x∣ψxj ⟩∣
2
+∥Px⊥ ∣ψ

x
j ⟩∥

2
= 1 and ∣⟨x∣ψxj ⟩∣

2
> 1

2 we must have that

∥Px⊥ ∣ψ
x
j ⟩∥ <

1√
2

and therefore

∥∣ψxj ⟩ − ∣ψj⟩∥
2
≥ 2 − 2 ∣⟨x∣ψj⟩∣ −

√
2

Keeping in mind that there are N different values of x,

11

Dj = ∑x ∥∣ψ
x
j ⟩ − ∣ψj⟩∥

2

≥ ∑x [2 −
√

2 − 2 ∣⟨x∣ψj⟩∣]

= (2 −
√

2)N − 2∑x ∣⟨x∣ψj⟩∣

≥ (2 −
√

2)N − 2 (∑x 12)
1
2 (∑x ∣⟨x∣ψj⟩∣

2
)

1
2 Cauchy − Schwarz

= (2 −
√

2)N − 2 (∑x 12)
1
2 Normality

= (2 −
√

2)N − 2
√
N

So at long last

4j2 ≥Dj ≥ (2 −
√

2)N − 2
√
N

and therefore

j ≥
√
N

¿
Á
ÁÀ2 −

√
2

4
−

1

2
√
N

= O (
√
N)

This means that quantum search algorithms for unsorted sets of size N require at
least O (

√
N) iterations, and since Grover’s algorithm does the job in j ≈ π

4

√
N steps no

algorithm will ever be faster by more than a scale factor; twice as fast maybe, but not

O (N
1
3).

12

Exercises

#1) One and Done.

Figure 4: The circuit for a search over N = 4 states.

This circuit performs a Grover search in one run.6 The boxed section is the part of the
circuit that would normally be a “black box”. It’s a multiply-controlled not gate: if the
top qubit7 is 0 and the middle qubit is 1, then the bottom qubit is flipped.

The output of the algorithm is given in binary by a measurement of the top two qubits.
The bottom qubit will always be found in the ∣1⟩ state at the end of this algorithm.

a) Follow the state of the system all the way through the circuit.

b) What is the target state, ∣x0⟩?

c) Indicate which parts of the circuit are:

1) Preparing the initial state, ∣w0⟩.
2) Performing the oracle operation, Uf = I − 2∣x0⟩⟨x0∣.
3) Performing the diffusive operation, U0 = I − 2∣w0⟩⟨w0∣.

d) What would the circuit look like if it applied Q2, instead of just Q as it does now?

e) What would be the output state just before measurement?

6Which is possible because for N = 2n = 4 the angle between ∣00⟩+∣01⟩+∣10⟩+∣11⟩

2
and the target state, ∣00⟩,

∣01⟩, ∣10⟩, or ∣11⟩, is 30o and therefore a single run will rotate the state 60o to stop at 90o, ending the
algorithm.

7The white dot indicates that you’re using the opposite of a regular CNOT gate; the target qubit is
flipped when the control is zero and left alone when the control is 1.

13

#2) You Never Lose Just One Key.

The Grover algorithm can be expanded to finding any one of many marked states. Instead
of one marked state, assume (for simplicity) that the marked states are all the states in
the set S = {∣1⟩, ∣2⟩, . . . , ∣s⟩}. Define

∣S⟩ =
1
√
s

s

∑
x=1

∣x⟩ ∣w0⟩ =
1

√
N

N

∑
x=1

∣x⟩

The diffusive operator is the same, U0 = I − 2∣w0⟩⟨w0∣, but the oracle operation is now
Uf = I − 2∣S⟩⟨S∣.

a) Find ∣S⊥⟩, the normalized state in Span{∣S⟩, ∣w0⟩} such that ⟨S∣S⊥⟩ = 0.

b) Write the initial state, ∣w0⟩, as a linear combination of ∣S⟩ and ∣S⊥⟩.

c) How many iterations of Q = −U0Uf does it take to transform ∣w0⟩ → ∣S⟩?

#3) When “Good Enough” is Good Enough.

If the Grover algorithm takes a thousand iterations, then the last few don’t really seem
necessary. If N is the number of items, then as n → π

4

√
N the state of the system is

already really close to ∣x0⟩. So why not stop early? Assume that it’s easy and fast to verify
a correct answer, so we only need the Grover algorithm to produce a single correct result.

a) Assume there are N items. What is the probability of a success after n iterations?

b) For a given number of iterations, n, what is the expected number of times, T , you
will need to run the Grover algorithm before you see a correct result?

c) The total processing time is approximately nT . For a given N , what is the optimal
number of iterations to use in each run of the algorithm? On average, will this be faster
or slower than π

4

√
N?

14

