
QI Lecture 15

The Shor Algorithm

This lecture will make heavy use of number theory and some new notation and ideas:

“gcd(a, b)” is the greatest common divisor of a and b. When a and b are coprime,
gcd(a, b) = 1.

“xmodM” means is the remainder of x divided by M . For example, 13mod8 = 5.
Because it saves room and is easier to read, we’ll use “box and subscript”1 notation for the
mod, [13]8 = 5.

“φ(M)”, the “Euler phi of M”,2 is the number of positive integers less than M that are
coprime to M (share no factors in common). For example, checking off all of the numbers
less than ten with factors in common with ten (2 and 5) we get 1, /2,3, /4, /5, /6,7, /8,9, /10
and therefore φ(10) = 4. For primes, φ(P ) = P − 1 and for products of primes φ(PQ) =

(P − 1)(Q − 1).

The Motivation: RSA Encryption

RSA is an example of “trapdoor encryption”; encryption whose security is based on a
mathematical operation that’s easy to do if you know a secret and effectively impossible if
you don’t. In this case,

1) Generate very large primes P and Q.
2) Create M = PQ.
3) Now randomly generate k, such that gcd(k,φ(M)) = 1.
4) Find k−1 such that kk−1 = jφ(M) + 1.
5) Make k and M public and keep everything else private.

To turn a message T , where T <M , into cyphertext C:

C = [T k]
M

1This is non-standard notation, so don’t use it in anything you expect other people to understand.
2Same Euler as always.
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To decrypt:

[Ck
−1
]
M

= [T kk
−1
]
M

= [T jφ(M)+1]
M

= [T jφ(M)T ]
M

= T

This works because [aφ(M)]
M

= 1.3 For example, [3φ(10)]
10
= [34]

10
= [81]10 = 1.

Example If M = 15, then φ(15) = (5 − 1)(3 − 1) = 10. If the public key is k = 3, then
solving 3k−1 = 10j + 1 we find that k−1 = 7.

Given these keys, encrypt and decrypt the message T = 7.

C = [T k]
15
= [73]

15
= [343]15 = 13

T = [Ck
−1
]
15
= [137]

15
= [62748517]15 = 7

∎

“Breaking the key” means finding the private key, k−1, given the public key, k and M .
Finding k−1 amounts to solving for x in xk + yφ(M) = 1, which can be done in logarithmic
time.4 φ(M) = (P − 1)(Q− 1) where M = PQ, so without P and Q we can’t find k−1. But
finding P and Q is difficult.

For example, M = 6563955109193980058697529924699940996676491413219355771. What
are P and Q?5

Shor’s algorithm breaks encryption keys by finding the factors of M .

The Trick

Define

f(x) = [ax]M

In a modulus, exponential functions generate infinitely repeating patterns.

3This isn’t quite true when gcd(a, b) ≠ 1, but it may as well be. We only need [ajφ(M)+1]
M

= a which is

always true. For example, [24
]
10

= 6 ≠ 1 but [25
]
10

= 2.
4This amounts to doing Euclid’s algorithm for finding the gcd.
5Obviously, P = 8764325985409367513190343 and Q = 748940091927375783904810247597.
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Example For M = 15 and a = 2:

[20]15 = 1

[21]15 = 2

[22]15 = 4

[23]15 = 8

[24]15 = [16]15 = 1

[25]15 = [32]15 = 2

[26]15 = [64]15 = 4

[27]15 = [128]15 = 8

[28]15 = [256]15 = 1
⋯

This pattern, 1,2,4,8,1,2,4,8, . . ., repeats forever.

∎

The “order of [a]M” is the smallest number r such that [ar]M = 1 and for the purposes
of these notes this is written “o ([a]M) = r”. If r is even,

[ar]M = 1

[ar − 1]M = 0

[(a
r
2 )2 − 1]

M
= 0

[(a
r
2 + 1)(a

r
2 − 1)]

M
= 0

So (a
r
2 + 1)(a

r
2 − 1) is equal to some multiple of M , and when neither factor alone is a

multiple of M , then one must be a multiple of P and the other must be a multiple of Q.
Therefore the gcd of either factor with M will yield one of M ’s two prime factors.

The Shor algorithm factors M by finding r.

Example Since we already know from the last example that o ([2]15) = 4 and 4
happens to be an even number,

1 = [24]15

0 = [24 − 1]15

0 = [(22 − 1)(22 + 1)]15

0 = [(3)(5)]15
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Although we (clearly) don’t need it, we can find the factors that each of these terms
have in common with 15 using the gcd.

gcd(15,3) = 3 gcd(15,5) = 5

Evidently, the prime factors of 15 are 3 and 5. Tell your friends.

∎
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What You Need a Quantum Computer For

Typically, r = O(M) (it’s smaller, but on the order of M), so it’s very big for a reasonable
encryption key. For the same M from earlier,

M = 6563955109193980058697529924699940996676491413219355771

to find the order of 2 classically, you’d need to raise it to every power until

[26563955109193980058697529175751084743315298140895917832]
M

= 1

Unfortunately, there isn’t enough time before the heat death to raise 2 to every power
up to r. A quantum computer raises a to a superposition of every power up to N and then
uses the QFT to find the period, r, of the repeating patterns that are created.

Figure 1: Left: Shor’s algorithm uses a QFT to find the period, r, of repeating patterns
in f(x) = [ax]M . Right: In a classical computer we don’t have superpositions, so the QFT
doesn’t make sense. Even worse, Earth isn’t large enough to store all of the values of f(x)
needed to perform a classical DFT.

We begin with two registers of n qubits each, where N = 2n >M2 (for reasons that will
become clear later).

∣0⟩⊗n∣0⟩⊗n

To save room on notation, we’ll stop writing “⊗n” and just keep in mind that both of
these registers have n qubits. The first register is then run through a bank of Hadamard
operators, H⊗n, to produce an even superposition over all input states.

1
√
N

N−1

∑
x=0

∣x⟩∣0⟩

We then apply a unitary function, Uf ∣x⟩∣y⟩ = ∣x⟩∣y⊕ f(x)⟩ where ⊕ is addition mod N ,
to put f(x) = [ax]M into the second register.
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1
√
N

N−1

∑
x=0

∣x⟩∣f(x)⟩

We immediately measure the second register. The value of f(x) is completely irrelevant;
the only thing that’s important is that the same value recurs every r. In other words,
f(x0) = f(x0 + r) = f(x0 + 2r) = . . . Therefore, a measurement of the second register
resulting in ∣f(x0)⟩ leaves the system in the state

√
r

N

N
r
−1

∑
j=0

∣x0 + jr⟩∣f(x0)⟩

Here “Nr ” is approximate; in reality this value is either ⌊N
r
⌋ or ⌊N

r
⌋+ 1, but considering

that N and r are typically both huge numbers, Nr is good enough. The first register is now
in a superposition of states spaced r apart, starting at x0. Having measured the second
register, we no longer need to keep track of it.6

√
r

N

N
r
−1

∑
j=0

∣x0 + jr⟩

We now apply the QFT

∣Ψ⟩ =

√
r

N

N−1

∑
k=0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

N
r
−1

∑
j=0

e
2πik
N
(x0+jr)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∣k⟩ =

√
r

N

N−1

∑
k=0

e
2πik
N

x0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

N
r
−1

∑
j=0

e
2πi
N
jrk

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∣k⟩

The probability distribution on k will tend to spike strongly where kr
N ≈ Z and e2πij

kr
N ≈

1. Specifically,

p(−
r

2
≤ [kr]N ≤

r

2
) ≥

4

π2
≈ 40.5%

Remember that r <M and M2 < N , so this is a very narrow window for large values of
M .

Finally, the first register is measured. The condition that − r2 ≤ [kr]N ≤ r
2 , basically

means that [kr]N ≈ 0 and therefore k
N ≈ `

r , where ` means nothing and r is what we’re
looking for. We know N = 2n because we built the machine and know how many qubits

6We could wait until the end of the algorithm to measure the second register. The time that a measure-
ment is made makes no difference, so if a state is ready to be measured, it doesn’t matter if you wait for a
while. We measuring here to make the math easier for ourselves and to really underscore the importance
of the repeating pattern by using the simplest possible repeating pattern.
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it’s using, n, and we got k from measuring the first register. All that’s left is to do some
math and find r.

Sometimes, for entirely mathematical reasons, the choice of a doesn’t produce a useful
result and a new a needs to be selected. Selected at random, the probability of picking a
useful a ∈ [0,N − 1] is

p(good number) ≥
1

2

Here’s What You Do With The Results

The condition − r2 ≤ [kr]N ≤ r
2 can be re-written:

− r2 ≤ [kr]N ≤ r
2

`N − r
2 ≤ kr ≤ `N + r

2 (` ∈ Z)

`N
r − 1

2 ≤ k ≤ `N
r + 1

2

`
r −

1
2N ≤ k

N ≤ `
r +

1
2N

`
r −

1
2N ≤ k

N ≤ `
r +

1
2N

∣ k
N − `

r
∣ ≤ 1

2N

The statement ∣ k
N − `

r
∣ ≤ 1

2N is enough to establish uniqueness of ` and r given k and
N .

For two distinct rational numbers a
b and c

d , with b, d < M , we have ∣a
b −

c
d
∣ = ∣ad−bc

bd
∣ ≥

∣ad−bc∣
M2 ≥ 1

M2 . Assuming there are two solutions, `′
r′ ,

`
r we have:

∣
`′

r′
−
`

r
∣ ≤ ∣

k

N
−
`

r
∣ + ∣

k

N
−
`′

r′
∣ ≤

1

2N
+

1

2N
≤

1

M2

Which is impossible for `′
r′ ,

`
r distinct and r, r′ <M .

Now, find the continued fraction expansion of k
N , and take successfully longer and

longer approximations until the last step in which the denominator is less than M . That
last continued fraction approximation will be `

r .
If (`, r) = 1, then r is found. Otherwise, you’ve got a reduced fraction, and only a divisor

of r has been found. However, for large random values of ` and r, P ((`, r) = 1) = 6
π2 ≈ 61%.

Most of the remaining 39% takes the form of ` and r sharing 2, 3, or 5, which is easy to
sort out.
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A continued fraction takes the formX = a0+
1

a1+
1

a2+ 1
a3+...

and is writtenX = [a0;a1, a2, . . .].

Truncating a continued fraction yields the best approximation of any number with a
denominator less than or equal to the given truncation. a0 is the integer part of X.
X − a0 =

1
a1+

1

a2+ 1
a3+...

and 1
X−a0

= a1 +
1

a2+
1

a3+...
, so a1 is the integer part of 1

X−a0
. Repeating

this procedure yields the continued fraction.

Example Find the first several continued fraction approximations of π.

⌊π⌋ = 3 π ≈ 3

⌊
1

π − 3
⌋ = ⌊7.0625133⌋ = 7 π ≈ [3; 7] = 3 +

1

7
=

22

7
≈ 3.1428

⌊
1

7.0625133 − 7
⌋ = ⌊15.9965959⌋ = 15 π ≈ [3; 7,15] = 3 +

1

7 + 1
15

=
333

106
≈ 3.1415094

⌊
1

15.9965959 − 15
⌋ = ⌊1.0034157⌋ = 1 π ≈ [3; 7,15,1] = 3+

1

7 + 1
15+ 1

1

=
355

113
≈ 3.1415929

There is no rational approximation to π closer than 355
113 with a denominator less than

or equal to 113.

∎

Example Find all of the continued fraction approximations of X = 10
47 .

10

47
= 0 +

10

47
⇒ X ≈ [0] = 0

47

10
= 4 +

7

10
⇒ X ≈ [0; 4] = 0 +

1

4
=

1

4

10

7
= 1 +

3

7
⇒ X ≈ [0; 4,1] = 0 +

1

4 + 1
1

=
1

5

7

3
= 2 +

1

3
⇒ X ≈ [0; 4,1,2] = 0 +

1

4 + 1
1+ 1

2

=
3

14

3

1
= 3 + 0 ⇒ X = [0; 4,1,2,3] = 0 +

1

4 + 1
1+ 1

2+ 1
3

=
10

47
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∎

This is completely irrelevant to the class, but Continued Fractions are, in several sig-
nificant ways, a better way to represent real numbers than our usual decimal form. They
terminate if and only if a number is rational, there is a unique representation for every real
number, those that repeat forever are quadratic irrationals7, [0; 1,2,3, . . . and [1; 2,3, . . .]
are reciprocals, and a truncated expansion produces the “best rational approximation” in
the sense used by the Shor algorithm.

The worst continued fraction expansion belongs to

ϕ = [1; 1,1,1,1,1, . . .] = 1 +
1

1 + 1
1+ 1

1+⋯

= 1 +
1

ϕ

which is the Golden Ratio, ϕ = 1+
√

5
2 ≈ 1.6180 . . ., and the slowest converging CF

expansion. Incidentally, the reason that ϕ can be represented as a quadratic irrational is
that it is the solution to the quadratic equation

ϕ = 1 +
1

ϕ
⇒ ϕ2

− ϕ − 1 = 0

7solutions to quadratic equations
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The Probability The Quantum Part Works

−
r

2
≤ [kr]N ≤

r

2

is specifically what is meant by “krN is close to an integer”.

For every b ∈ [− r2 ,
r
2
], there is a k = [br−1]

N
such that [kr]N = b ∈ [− r2 ,

r
2
]. So, the fact

that − r2 ≤ [kr]N ≤ r
2 for r different values of k is trivial in that there are r numbers in the

interval from − r2 to r
2 .

We assume that − r2 ≤ [kr]N ≤ r
2 and therefore, using b = kr ≤ r

2 ,

p(k) = ∣⟨k∣Ψ⟩∣2

= r
N2 ∣∑

N−1
s=0 e

2πis
N

x0 [∑
N
r
−1

j=0 e
2πi
N
jrs] ⟨k∣s⟩∣

2

= r
N2 ∣e

2πik
N

x0∑
N
r
−1

j=0 e
2πi
N
jrk∣

2

= r
N2 ∣∑

N
r
−1

j=0 e
2πi
N
jrk∣

2

= r
N2 ∣∑

N
r
−1

j=0 e
2πi
N
jb∣

2

= r
N2 ∣1−e

2πi
N

N
r b

1−e
2πi
N

b
∣
2

= r
N2 ∣ 1−e

2πi br

1−e2πi
b
N

∣
2

When θ ∈ [−π,π], we have that 2
π ∣θ∣ ≤ ∣1 − eiθ∣ ≤ ∣θ∣. Notice that since ∣b∣ ≤ r

2 , we know

that 2π br ≤ π, and because r <M ≤
√
N , we also trivially know that 2π b

N << π. Therefore,

≥ 4
π2

r
N2 ∣

2π b
r

1−e2πi
b
N

∣
2

≥ 4
π2

r
N2 ∣

2π b
r

2π b
N

∣
2

= 4
π2

r
N2 ∣N

r
∣
2

= 4
π2

1
r

So p(k) ≥ 4
π2r

for each value of k such that − r2 ≤ [kr]N ≤ r
2 . There are r different such

values of k and therefore

p(−
r

2
≤ [kr]N ≤

r

2
) ≈ rp(k) ≥

4

π2
≈ 40.5%
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Some Number Theory

This section is about trying to understand the math and issues a little better, by considering
M = 35 = 5 ⋅ 7.

Notice the use of the direct product in “Z35 ≅ Z5 ⊗ Z5”. In the same way we describe
the basis of product spaces, A ⊗B, using pairs of states, we can describe Z35 using pairs
of numbers, one each in Z5 and Z7.

The order, r = o(a), is the smallest number such that [ar]M = 1. Notice that

r∣φ(PQ)

or in this case, r∣φ(35) = (5 − 1)(7 − 1) = 24. This is a result from group theory

Theorem (Lagrange’s theorem). The number of elements in a subgroup always divides the
number of elements in the group.

The group here is the “multiplicative group mod M”, Z×M , which is composed of all
numbers coprime to M , of which there are φ(M), and the subgroups are “cyclic subgroups”.
For example, since [84]35 = 1, the set of powers of 8,

S = {8,82,83,84,85,86, . . .} = {8,82,83,1,8,82, . . .} = {1,8,82,83} = {1,8,29,22}

is a multiplicative subgroup. Notice that any pair of numbers multiplied together is
just another power of 8, and thus still in the set. And of course, r = 4∣24 = φ(35)!

a ∈ Z5 o(a)

0 1
1 1
2 4
3 4
4 2

a ∈ Z7 o(a)

0 1
1 1
2 3
3 6
4 3
5 6
6 2

Using the Chinese Remainder Theorem you can look at any number in ZM as a pair of
numbers in the product space ZM ≅ ZP ⊗ZQ. To go ZM → ZP ⊗ZQ take the corresponding
mod and to go ZP ⊗ZQ → ZM use the Chinese Remainder Theorem.8

8For reasonably finite M , it’s easier to just have a list (like the 35 example in this lecture) of corresponding
representations, z↔ (x, y), rather than to apply the CRT every time you want to go ZP ⊗ ZQ Ð→ ZPQ.
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Example Arbitrarily choosing two numbers to do with math:

[8]35 ∼ ([3]5, [1]7) [2]35 ∼ ([2]5, [2]7)

Because Z35 ≅ Z5⊗Z7 we can add or multiply these numbers in either space and arrive
at the same answer. To go back and forth between Z35 ↔ Z5⊗Z7 it will be easiest to refer
to the Z35 table on the following page.

Multiplying in Z35:

[8 × 2]35 = [16]35 ∼ ([1]5, [2]7)

Multiplying in Z5 ⊗Z7:

([3]5, [1]7) × ([2]5, [2]7) = ([3 × 2]5, [1 × 2]7) = ([1]5, [2]7) ∼ [16]35

Adding in Z35:

[8 + 2]35 = [10]35 ∼ ([0]5, [3]7)

Adding in Z5 ⊗Z7:

([3]5, [1]7) + ([2]5, [2]7) = ([3 + 2]5, [1 + 2]7) = ([0]5, [3]7) ∼ [10]35

∎

12



a ∈ Z35 Z5 ⊗Z7 r = o(a) [a
r
2 − 1]

35
[a

r
2 + 1]

35

0 (0,0) 1
1 (1,1) 1
2 (2,2) 12 (28,30)
3 (3,3) 12 (28,30)
4 (4,4) 6 (28,30)
5 (0,5) 6 (19,21)
6 (1,6) 2 (5,7)
7 (2,0) 4 (13,15)
8 (3,1) 4 (28,30)
9 (4,2) 6 (28,30)
10 (0,3) 6 (19,21)
11 (1,4) 3
12 (2,5) 12 (28,30)
13 (3,6) 4 (28,30)
14 (4,0) 2 (13,15)
15 (0,1) 1
16 (1,2) 3
17 (2,3) 12 (28,30)
18 (3,4) 12 (28,30)
19 (4,5) 6 (33,35)
20 (0,6) 2 (19,21)
21 (1,0) 1
22 (2,1) 4 (28,30)
23 (3,2) 12 (28,30)
24 (4,3) 6 (33,35)
25 (0,4) 3
26 (1,5) 6 (5,7)
27 (2,6) 4 (28,30)
28 (3,0) 4 (13,15)
29 (4,1) 2 (28,30)
30 (0,2) 3
31 (1,3) 6 (5,7)
32 (2,4) 12 (28,30)
33 (3,5) 12 (28,30)
34 (4,6) 2 (33,35)

Blue numbers are not coprime to 35. There are always M−φ(M) = PQ−(P−1)(Q−1) =
P +Q− 1 non-coprimes, and here we see 5+ 7− 1 = 11 blue numbers. As M = PQ becomes
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very large, the probability of randomly picking an a that isn’t coprime to M is effectively
zero,9 so the fraction of blue numbers drops to effectively zero.

Red numbers are good choices for a, since [a
r
2 − 1]

M
[a

r
2 + 1]

M
is a pair of numbers

s.t.

gcd ([a
r
2 ± 1]

M
,M) = P,Q

For example,

[2
12
2 ± 1]

35
= [64 ± 1]35 = [29 ± 1]35 = 28,30

gcd(28,35) = 7 gcd(30,35) = 5

9a would have to be a multiple of either P or Q, primes which are each at least dozens of digits long.
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The Probability The Math Part Works

There are some difficulties that can crop up before the Shor algorithm is even run that
have to do with the assumptions put on a.

1) a is not coprime to M . In which case you’re already done.
For gcd(a,M) ≠ 1, a has no order, because [ar]M ≠ 1, ∀r. However, this is unlikely. The

number of numbers not coprime to M is M−φ(M) = PQ−(P −1)(Q−1) = P +Q−1 ≈ 2
√
M .

So, the chance of randomly picking a non-coprime number is about 2
√

M
M = 2

√

M
.

That said, if this happens, you’re done because you’ve already found a factor of M .
Also, call someone and tell them about the fact that you’ve just experienced one of the
least likely things to ever happen to anyone.

2) r isn’t even. In which case you pick a new a and repeat.

[1]M ∼ ([1]P , [1]Q)

which means that if z ∼ (x, y) and o([x]P ) = b and o([y]Q) = c, then o([z]M) = lcm(b, c),
because

[zlcm(b,c)]M ∼ ([xlcm(b,c)]P , [y
lcm(b,c)

]Q) = ([(xb)
lcm(b,c)

b ]
P

, [(yc)
lcm(b,c)

c ]
Q
) = ([1]P , [1]Q)

where, by definition,
lcm(b,c)

b and
lcm(b,c)

c are integers.

Write φ(P ) = P − 1 = 2jp and φ(Q) = Q − 1 = 2`q, where p, q are the products of all of
the odd prime factors of P − 1 and Q − 1 respectively. Not that j, ` ≥ 1, since P − 1 and
Q − 1 are both even. The numbers with odd order mod M are those numbers where both
numbers in their ZP ⊗ZQ representation have odd order in mod P and mod Q.

For a prime modulus, P , the number of numbers of order d, where d∣φ(P ), is φ(d).
For example, in the M = 7 example we see that there are two numbers of order 6 (φ(6) =
(3 − 1)(2 − 1) = 2), two of order 3 is (φ(3) = 3 − 1 = 2), one of order 2 is (φ(2) = 2 − 1 = 1),
and one of order 1 (φ(1) = 1).

So the number of numbers with odd order is

∑
d∣p

∑
f ∣q

φ(d)φ(f) =

⎡
⎢
⎢
⎢
⎢
⎣

∑
d∣p

φ(d)

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

∑
f ∣q

φ(f)

⎤
⎥
⎥
⎥
⎥
⎦

= pq

This last step is due to the fact that, in general

∑
d∣N

φ(d) = N

15



which is just one of those amazing results from number theory.
For example,

φ(1) = 1, φ(2) = 1, φ(5) = 4, φ(10) = 4 and 1 + 1 + 4 + 4 = 10

Only numbers coprime to M have definable orders, and there are φ(M) = φ(P )φ(Q) =

2j+`pq of those, so the chance of randomly picking a number with an odd order is

1

φ(M)
∑
d∣p

∑
f ∣q

φ(d)φ(f) =
pq

2j+`pq
=

1

2j+`
≤

1

4

Picking a new a is at least 75% likely to yield a number that has an even order.

Example In the 35 example, we find that of the 24 numbers coprime to 35, only 3
have an odd order, {1,11,16}. Notably, 3

24 ≤
1
4 .

This lines up exactly with the prediction, that the number of odd-order numbers would
be pq = 1 ⋅ 3 = 3, where p and q are the odd factors of φ(5) = 4 and φ(7) = 6.

∎

3) [a
r
2 ]
M

= −1. In which case (a
r
2 + 1) is a multiple of M , and neither term has

non-trivial factors.10 Picking a new a will work at least two thirds of the time.
Returning to the product representation, ZM ≅ ZP ⊗ZQ, we can write a ∼ (x, y). Again,

o([x]P ) = B and o([y]Q) = C means that o([a]M) = lcm(B,C) = r. In a prime modulus,
x2 = 1 if and only if x = 1,−1. So, if ar ∼ (xr, yr) = (1,1) ∼ 1, then (x

r
2 , y

r
2 ) = (±1,±1)

There are now three cases:

i) (x
r
2 , y

r
2 ) = (1,1) ∼ 1 Impossible, since this would imply that the order is actually r

2 .

ii) (x
r
2 , y

r
2 ) = (1,−1) or (−1,1) This is the ideal case, where a

r
2 ≠ −1.

iii) (x
r
2 , y

r
2 ) = (−1,−1) ∼ −1 This is the problem case.

Rewrite o([x]P ) = B = 2ib, o([y]Q) = C = 2kc, where b, c are the products of all of the
odd factors of B and C. Now, notice what happens when (x, y) is raised to the r

2 :

10“Non-trivial factors” means P or Q, but not M = PQ.
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(x
r
2 , y r2)

= (x
1
2
lcm(B,C), y

1
2
lcm(B,C))

= (x
1
2
2max(i,k)lcm(b,c), y

1
2
2max(i,k)lcm(b,c))

= (x
2max(i,k)−1b c

gcd(b,c) , y
2max(i,k)−1c b

gcd(b,c))

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(1,−1) , i < k
(−1,1) , i > k
(−1,−1) , i = k

Because if i < k, then B = 2ib∣2max(i,k)−1b, similarly for i > k. The b
gcd(b,c) and c

gcd(b,c)
terms are odd, so they leave the sign the same. We find that the problem only occurs when
i = j.

Once again writing φ(P ) = 2jp and φ(Q) = 2`q, we can find the number of numbers
with the property that a ∼ (x, y), where o([x]P ) = 2ib, o([y]Q) = 2kc and i = k. Keeping in
mind that the order of x must divide φ(P ) = 2jp and similarly for y,

∑b∣p∑c∣q∑
min(j,`)
k=1 φ(2kb)φ(2kc)

= ∑b∣p∑c∣q∑
min(j,`)
k=1 φ(2k)2φ(b)φ(c)

= [∑b∣p φ(b)] [∑c∣q φ(c)] [∑
min(j,`)
k=1 φ(2k)2]

= [p] [q] [∑
min(j,`)
k=1 (2k−1)2]

=
pq
4 ∑

min(j,`)
k=1 4k

=
pq
4

4min(j,`)+1−4
4−1

=
pq
12

(4min(j,`)+1 − 4)

=
pq
3
(4min(j,`) − 1)

Here we used the properties φ(st) = φ(s)φ(t) when gcd(s, t) = 1 and φ (pk) = (p−1)pk−1

when p is prime. Also, the sum begins at k = 1, because we require that the order must be
even (and include at least one power of two).

So, the probability of picking an a such that a
r
2 = −1 is:
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p = 1
φ(M)

pq
3
(4min(j,`) − 1)

= 1
2j+`pq

pq
3
(4min(j,`) − 1)

= 1
3

1
2j+` (4min(j,`) − 1)

≤ 1
3

1
2j+` 4

min(j,`)

≤ 1
3

1
22min(j,`) 4

min(j,`)

= 1
3

Example In the M = 35 example, we have that 193 ∼ (4,6), 243 ∼ (4,6), 34 ∼ (4,6).
These are the only values of a such that [a

r
2 ]

35
= −1 and the only values that produce pairs

(33,35). These pairs are useless since

gcd(33,35) = 1 gcd(35,35) = 35

But fortunately, there are only 3 of these problem-numbers out of 24 and

3

24
≤

1

3

Finally, for φ(5) = 4 = 22 ⋅1 and φ(7) = 6 = 21 ⋅3 we have that min(1,2) = 1 and therefore
the number of these issue-numbers is

pq

3
(4min(j,`) − 1) =

3

3
(41 − 1) = 3

∎

For large M = PQ, we don’t have to worry about accidentally picking a multiple of
P or Q. So, overall there’s a chance q ≤ 1

4 of picking an a with odd order r and of the
remaining even-ordered a, there’s a chance of p ≤ 1

3 of an ineffective value, and therefore

p(good number) ≥
3

4
⋅
2

3
=

1

2
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Speed

Using binary exponentiation f(x) can be evaluated in logarithmic time.
For values of N of the form N = 2n the Discrete Quantum Fourier Transform works in

O (log(N log(N))) time.
On average, each step in the continued fraction approximation halves the distance to

the true value. As a result, continued fraction expansions work in logarithmic time.
There is a net chance of 50% that a will be chosen correctly, a 40.5% chance that given

a proper a the correct value of r will be found, and a 61% chance that (`, r) = 1 (which
typically doesn’t require a new run of the algorithm).

So, in any given run the chance of a complete success is approximately 12%, but a
correct answer is easy to verify.

Repeating the algorithm a fixed number of times multiplies the processing time by a
constant, but does make the time greater than logarithmic.
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Exercises

If you’re doing this entirely by hand, then remember that you never have to worry about
numbers larger than N when you’re doing math mod N .

Example:
[67]

13
= ?

By writing [67]
13
= [646261]

13
, we can use “exponentiation by squaring”:

[62]
13
= [36]13 = 10

[64]
13
= [(62)

2
]
13
= [102]

13
= [100]13 = 9

In this last step, you could be clever/lazy by using the fact that [10]13 = [−3]13 and so

[102]
13
= [(−3)2]

13
= 9

Finally,

[67]
13
= [646261]

13
= [9 ⋅ 10 ⋅ 6]13 = [9 ⋅ 60]13 = [9 ⋅ 8]13 = [72]13 = 7

or just to make the numbers as small as possible at each step:

[67]
13
= [9 ⋅ 10 ⋅ 6]13 = [(−4) ⋅ (−3) ⋅ 6]13 = [12 ⋅ 6]13 = [(−1) ⋅ 6]13 = [−6]13 = 7

∎

#1) The Ballad of 2 mod 15.

Here you’ll run through the quantum part of Shor’s algorithm in order to factor 15. Rather
than use an N > 152, we’ll use N = 16, because the math will be much easier. The initial
state is

∣ψ⟩ =
1

4

15

∑
x=0

∣x⟩∣0⟩

where the first register is presently ∣x⟩ and the second is presently ∣0⟩. Incidentally,
both registers are made from 4 qubits, since N = 16 = 24. Define f(x) = [2x]15.

a) Apply Uf ∣x⟩∣y⟩ = ∣x⟩∣y ⊕ f(x)⟩.
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b) “Measure” the second register by randomly11 picking one of the possible states (they
should all be equally likely). What is the state that remains after this measurement?

c) Now that the second register is in a definite state, ignore it (literally stop bothering
to write it down). Explicitly perform/calculate the QFT of the first register.

d) “Measure” the first register by randomly selecting one of the available states (they
should all be equally likely). The result of this measurement is “k”. What is k

N ?

Since kr
N ≈ ` ∈ Z, k

N ≈ `
r where r < 15. What is r?

e) Calculate [2r]15, [2
r
2 + 1]

15
, and [2

r
2 − 1]

15
.

f) Find the greatest common divisor between 15 and each of [2
r
2 + 1]

15
and [2

r
2 − 1]

5
.

#2) The Curious Case of 20 mod 35.

Define f(x) = [20x]35 and an initial state

∣η⟩ =
1

8

63

∑
x=0

∣x⟩∣0⟩

a) Suppose the final measurement at the end of Shor’s algorithm is k = 32. What is r?

b) Calculate [20r]35, [20
r
2 + 1]

35
, and [20

r
2 − 1]

35
.

c) Find the greatest common divisor between 35 and each of [20
r
2 + 1]

35
and [20

r
2 − 1]

35
.

d) Your answers to c should feel a little incomplete. What’s going on here?

#3) Quantum Interpretation

Typically, the results from a quantum computer are not perfect, but close. Pretend we
want to factor

M = 21

We need an N such that M2 < N , so we choose

N = 29 = 512

11Seriously, convince yourself that you’re making a random choice. Use dice or coins or something.
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because it’s the smallest power of 2 greater than 212 = 441. So, although it doesn’t mat-
ter, this particular calculation could be done with two 9-qubit registers. Finally, because
small numbers are better, we choose

a = 2

We’ll use Shor’s algorithm to find r, the order of 2 and the smallest number such that

[2r]21 = 1

The output of the algorithm (the only important part12) is

k = 425

a) Use continued fractions to approximate k
N with a converging series of simpler frac-

tions. Stop when you get to `
r , where r is the largest and last denominator smaller than

M = 21.
To get you started with k

N = 425
512 :

425

512
= 0 +

425

512
⇒ X ≈ [0] = 0

512

425
= 1 +

87

425
⇒ X ≈ [0; 1] = 0 +

1

1
= 1

What is r?

b) Find q = [a
r
2 − 1]

21
and p = [a

r
2 + 1]

21
.

c) Find gcd(q,21) and gcd(p,21).

#4(optional) The Chimera of 4 mod 35.

The big idea behind this question is to get you to think of the one big “gear” ZM as a pair
of “gears” ZP ⊗ZQ.

a) Find the order, s, of [4]5, by calculating [4]5, [4
2]

5
, [43]

5
, . . .

b) Find the order, t, of [4]7, by calculating [4]7, [4
2]

7
, [43]

7
, . . .

c) The product representation of 4, in Z5 ⊗Z7, is 4 ∼ (4,4). Find the order, r, of [4]35,
by calculating ([4]5, [4]7) , ([4

2]
5
, [42]

7
) , ([43]

5
, [43]

7
) , . . ., remembering that 1 ∼ (1,1).

12It doesn’t matter what result you see when measuring the second register (just that you measure it).
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d) Write an equation that relates r, s, and t, and justify it.

e) Test the equation you came up with in part d, on 34 ∼ (4,6) (just look up the orders
in the tables). Explain what you had to correct for.

If you already corrected for it: good. This idea, of looking at ZP ⊗ ZQ to understand
the behavior (including the orders) of ZM , is a lot of what’s happening in the “The Possible
Difficulties Are” section.
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