
QI Lecture 16

Quantum Measurements

Projective Measurements

The measurements we’ve considered in the class so far have been “projective measurements”
meaning that the measurement operators are projections.1 We’ll first review what we know
by summing up the properties of these measurements with a few postulates. We define an
“observable” as

M = ∑

m

mPm

and will assume we’re measuring a state described either2 as ∣ψ⟩ or ρ using this observ-
able.

1It’s a good name.
2We can use either kets or density matrices for pure states, but for mixed states we must use density

matrices.
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1) The measurement operators are a set, {Pm}, that span the entire space.

∑

m

PmP
†
m = ∑

m

Pm = I

This is just another way of saying that no matter what state you measure, you’ll always get
a result.

2) The measurement operations, Pm, for projective measurements are projections

PjPk = δjkPj

which also implies that the only possible eigenvalues of these operations are 0 and 1.

3) A measurement yields one eigenvalue, m, corresponding to one projection operator, Pm.

4) The probability of result m is

p(m) = ∥Pm∣ψ⟩∥2 = ⟨ψ∣P †
mPm∣ψ⟩ = ⟨ψ∣Pm∣ψ⟩ p(m) = Tr [PmρP

†
m] = Tr [Pmρ]

5) Following a measurement with result m the state of the system is

∣ψm⟩ =

Pm∣ψ⟩
√

p(m)

=

Pm∣ψ⟩
√

⟨ψ∣P †
mPm∣ψ⟩

ρm =

PmρP
†
m

p(m)

=

PmρP
†
m

Tr [PmρP
†
m]

This is a clean “cookie-cutter” removal of every part of the original state consistent with the
measurement, re-normalized.

6) An unreported measurement produces a mixed state

ρ′ = ∑
m

p(m)∣ψm⟩⟨ψm∣ = ∑

m

Pm∣ψ⟩⟨ψ∣P †
m ρ′ = ∑

m

p(m)ρm = ∑

m

PmρmP
†
m

because we’re left with an ensemble of states where p(∣ψm⟩) = p(m). One effect of this is
to destroy any coherence that exists between mutually exclusive measurements. Although
we may not be aware of what measurement occurred, we know (from postulate #3) that
there was only one and therefore the state cannot be in a superposition that spans multiple
results.

All of the daggers above are completely pointless, since P †
m = Pm, and many of the

projections are redundant, since P 2
m = Pm. We’re writing it this way so that the generalized

measurements below will seem more familiar and reasonable.
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Positive Operator Valued Measures (POVMs)

There’s nothing about quantum measurements that requires us to use projection operators
to describe them.We’ll drop postulate #2 and generalize to a new set of operators

Pm Ð→ Am P †
mPm Ð→ A†

mAm = Πm

{Am} are the “detection operators” and {Πm} are the “elements of the POVM”.
For projective operators we can quickly simplify many of the postulates, but with these

new operations we no longer have that option. For example,

p(m) = Tr [PmρP
†
m] = Tr [P †

mPmρ] = Tr [PmPmρ] = Tr [Pmρ]

and now

p(m) = Tr [AmρA
†
m] = Tr [A†

mAmρ] = Tr [Πmρ]

We find that Am is important for figuring out what the impact of the measurement is
on the initial state and Πm is important for everything else.

Take a look at postulate #4 above. The positivity of probabilities implies that

0 ≤ p(m) = ⟨ψ∣A†
mAm∣ψ⟩ = ⟨ψ∣Πm∣ψ⟩

for all ∣ψ⟩, which defines Πm as a positive operator. Moreover, the normalization of
probabilities implies a new postulate #1:

1 = ∑
m

p(m) = ∑

m

⟨ψ∣Πm∣ψ⟩ = ⟨ψ∣ (∑
m

Πm) ∣ψ⟩ ⇒ ∑

m

Πm = I
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1) The POVM is a set of operators, {Πm}, that partition the identity operator on the space

∑

m

AmA
†
m = ∑

m

Πm = I

2) The elements of the POVM, Πm, are positive operators that can be expressed in terms of
detection operators, Πm = A†

mAm, where the detection operators are not in general hermitian
(A†

≠ A). Conversely, the detection operators can be expressed as Am = Um
√

Πm, where Um
is some unitary operator.

3) A measurement yields one of the alternatives corresponding to an element of the POVM,
which we index using m.

4) The probability of result m is

p(m) = ⟨ψ∣A†
mAm∣ψ⟩ = ⟨ψ∣Πm∣ψ⟩ p(m) = Tr [AmρA

†
m] = Tr [Πmρ]

5) Following a measurement with result m the state of the system is

∣ψm⟩ =

Am∣ψ⟩
√

p(m)

=

Am∣ψ⟩
√

⟨ψ∣Πm∣ψ⟩
ρm =

AmρA
†
m

p(m)

=

AmρA
†
m

Tr [AmρA
†
m]

=

AmρA
†
m

Tr [Πmρ]

The possible unitary operator in Am = Um
√

Πm allows for a huge amount of flexibility in
designing measurements.

6) An unreported measurement produces a mixed state

ρ′ = ∑
m

Am∣ψ⟩⟨ψ∣A†
m ρ′ = ∑

m

p(m)ρm = ∑

m

AmρmA
†
m

Note that projective measures are a special case of POVMs, since when Am = Pm all of
the postulates for POVMs hold. There are however major differences.

For projective measures there is a limit to the number of possible results. The “smallest”
that a projection can be is one-dimensional, Pk = ∣k⟩⟨k∣, and since PjPk = δjkPk and

∑k Pk = I,

There are at most as many projection operators in {Pm} as there are dimensions in the space.

However, POVMs do not have this restriction.
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Neumark’s Theorem3

Example We’ve seen before that if spaces A and B share an entangled state, then
a (reported) measurement in one space affects the state in the other. This gives us a new
way to execute measurements on states ∣ψ⟩. Suppose that Alice and Bob share the (not
maximally) entangled state

∣ψ⟩ =
∣+⟩a∣0⟩b + ∣1⟩a∣1⟩b

√

2

and that Bob makes a measurement in the {∣0⟩a, ∣1⟩a} basis and announces result. Each
with a probability of one half, Alice’s qubit after this measurement will be

∣ψ(0)⟩a = ∣+⟩a ∣ψ(1)⟩a = ∣1⟩a

Notice that this set of results would be impossible for Alice to do with a projective
measurement on her own. Projective measurements are always orthogonal, so she could do
a measurement in either the {∣0⟩a, ∣1⟩a} or {∣+⟩a, ∣−⟩a}, but {∣+⟩a, ∣1⟩a} is not a measurement
that can be performed with a projective measurement. This is a job for POVMs or, it seems,
entanglement with an ancillary space followed by a measurement in that space.

∎

More generally, we take an arbitrary state ∣ψ⟩a ∈ A and attach an ancilla space B with
basis {∣m⟩b} (this will be the measurement basis) and an initially separate state ∣φ⟩b, so
we begin with the separable state ∣ψ⟩a∣φ⟩b.

The application of a unitary operator to this composite system, Uab∣ψ⟩a∣φ⟩b, entangles
it so that the probability of making a projective measurement in B and seeing ∣m⟩b is

p(m) = ∥(Ia ⊗ ∣m⟩b⟨m∣b)Uab∣ψ⟩a∣φ⟩b∥
2
= ⟨ψ∣a⟨φ∣bUab (Ia ⊗ ∣m⟩b⟨m∣b)Uab∣ψ⟩a∣φ⟩b

and the resulting state is

∣m⟩b⟨m∣bUab∣ψ⟩a∣φ⟩b
√

p(m)

We can write this more compactly by defining the detection operator Am as

Am∣ψ⟩a ≡ ⟨m∣bUab∣ψ⟩a∣φ⟩b

3Also spelled “Naimark”, because Soviets don’t need Roman letters.
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so that

p(m) = ⟨ψ∣aA
†
mAm∣ψ⟩a

and the resulting state is

Am∣ψ⟩a∣m⟩b
√

p(m)

or ignoring space B4

Am∣ψ⟩a
√

p(m)

Am serves the roll of the measurement operator in space A. While this operator is
defined entirely in A, it’s dependent on Uab, ∣m⟩b, and ∣φ⟩b. Take a moment to consider
the notation in the definition of Am; there’s a bra and ket for space B but only a ket for
A, which means that this is a quantum state (a ket) in A.

Neumark’s theorem says that these two ideas are essentially equivalent. The effect
of entangling and then measuring an ancilla space produce detection operators, {Am}, and
a POVM, {Πm = A†

mAm}, and conversely, a POVM can be performed by entangling and
measuring an ancilla space.

First, to show that “entangle A⊗B and measure B” is a POVM on A.
For any ∣ψ⟩a

1 = ∑
m

p(m) = ∑

m

⟨ψ∣aA
†
mAm∣ψ⟩a = ⟨ψ∣a (∑

m

A†
mAm) ∣ψ⟩a

which implies that

∑

m

A†
mAm = I

Moreover, the effect on ∣ψ⟩ ∈ A of observing ∣m⟩ ∈ B is

∣ψ⟩a
m
Ð→

Am∣ψ⟩a
√

p(m)

=

Am∣ψ⟩a
√

⟨ψ∣aA
†
mAm∣ψ⟩a

Consulting the postulates of POVMs we see that {A†
mAm} form a POVM.

4This is not a new thing. Since we haven’t been keeping track of the state of the observer (so far) we’ve
actually been ignoring the “pointer state”, ∣m⟩b, for the entire class so far. You can think of space B as
you, personally, or whatever apparatus is doing the measurement.
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Now to show the converse; that a POVM on A can be expressed through “entangling
A ⊗ B and measuring B”. Specifically, we need to show that given a set of detection
operators {Am} such that I = ∑mA

†
mAm (a POVM), can we define a space B, a state

∣φ⟩b ∈ B, and a unitary operator Uab such that Am∣ψ⟩a = ⟨m∣bUab∣ψ⟩a∣φ⟩b for all ∣ψ⟩a ∈ A.
It turns out that this is pretty easy because we can absorb all of the arbitrary choices

into Uab. Chose an M -dimensional space B with arbitrary basis {∣m⟩b}, where M is the
desired number of measurement results, and some arbitrary (but fixed) state ∣φ⟩b ∈ B.

Now define Uab using

Uab∣ψ⟩a∣φ⟩b ≡ ∑
m

Am∣ψ⟩a∣m⟩b

This adheres to the definition for Am, since

⟨m∣bUab∣ψ⟩a∣φ⟩b = ⟨m∣b (∑

k

Ak∣ψ⟩a∣k⟩b) = Am∣ψ⟩a

We don’t yet know that Uab is unitary5, so to check we need to show that it preserves
inner products; the defining characteristic of unitary operations.

⟨η∣a⟨φ∣bU
†
abUab∣ψ⟩a∣φ⟩b = (∑j⟨η∣aA

†
j ⊗ ⟨j∣b) (∑kAk∣ψ⟩a ⊗ ∣k⟩b)

= ∑jk⟨η∣aA
†
jAk∣ψ⟩a⟨j∣k⟩b

= ∑k⟨η∣aA
†
kAk∣ψ⟩a

= ⟨η∣a (∑kA
†
kAk) ∣ψ⟩a

= ⟨η∣ψ⟩a

Since ⟨η∣ψ⟩a = [⟨η∣a⟨φ∣b] [∣ψ⟩a∣φ⟩b] we have that Uab is unitary on the subspace spanned
by {∣k⟩a ⊗ ∣φ⟩b}k. In other words, it’s unitary when the state in B is ∣φ⟩. We haven’t
actually bothered to define Uab on the full space A ⊗ B, so let’s do that now. If ∣φ⊥⟩b is
any state orthogonal to ∣φ⟩b, then

Uab∣ψ⟩a∣φ⟩b ≡ ∑
m

Am∣ψ⟩a∣m⟩b Uab∣ψ⟩a∣φ
⊥
⟩b ≡ ∣ψ⟩a∣φ

⊥
⟩b

Defining Uab to be the identity on the space orthogonal to ∣φ⟩b makes it unitary on
A⊗B in general. Clearly ⟨η∣a⟨φ

⊥
1 ∣bU

†
abUab∣ψ⟩a∣φ

⊥
2⟩b = ⟨η∣a⟨φ

⊥
1 ∣b∣ψ⟩a∣φ

⊥
2⟩b and because

Uab∣ψ⟩a∣φ
⊥
⟩b = ∣ψ⟩a∣φ

⊥
⟩b ⇒ U †

abUab∣ψ⟩a∣φ
⊥
⟩b = U

†
ab∣ψ⟩a∣φ

⊥
⟩b ⇒ ∣ψ⟩a∣φ

⊥
⟩b = U

†
ab∣ψ⟩a∣φ

⊥
⟩b

we have that

5Even though the “U” notation is so suggestive.
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⟨η∣a⟨φ∣bU
†
abUab∣ψ⟩a∣φ

⊥
⟩b = ⟨η∣a⟨φ∣bU

†
ab∣ψ⟩a∣φ

⊥
⟩b = ⟨η∣a⟨φ∣b∣ψ⟩a∣φ

⊥
⟩b

This proves Neumark’s Theorem.

Any POVM on space A, {A†
mAm}, is equivalent to a projection measurement on A⊗B.

This can be realized by expressing Am∣ψ⟩a ≡ ⟨m∣bUab∣ψ⟩a∣φ⟩b for appropriately chosen Uab,
∣φ⟩b and {∣m⟩b}, and then executing a projective measurement on B in the measurement
basis {∣m⟩b}.

Unambiguous State Discrimination

In unambiguous state discrimination we’d like to be able to identify states as accurately as
possible, without ever mistaking one state for another. Assume that we have an ensemble
composed of two non-orthogonal states, ∣ψ1⟩ and ∣ψ2⟩ such that ⟨ψ1∣ψ2⟩ ≠ 0, and the density
matrix of this ensemble is

ρ = r1∣ψ1⟩⟨ψ1∣ + r2∣ψ2⟩⟨ψ2∣

This is the situation where Alice is sending Bob the states ∣ψ1⟩ and ∣ψ2⟩ with proba-
bilities r1 and r2 and it’s up to Bob to figure out which state was sent without mistaking
one for the other.

Unfortunately, it isn’t possible to perfectly distinguish non-orthogonal states. That is,
there is no POVM {Πm} such that

⟨ψ1∣Π1∣ψ1⟩ = ⟨ψ2∣Π2∣ψ2⟩ = 1 ⟨ψ1∣Π2∣ψ1⟩ = ⟨ψ2∣Π1∣ψ2⟩ = 0

We can see that this is the case by first noting that

⟨ψj ∣Πk∣ψj⟩ = ⟨ψj ∣A
†
kAk∣ψj⟩ = ∥Ak∣ψj⟩∥

2

and therefore

⟨ψj ∣Πk∣ψj⟩ = 0 ⇒ Ak∣ψj⟩ = 0 ⇒ Πk∣ψj⟩ = 0 and ⟨ψj ∣Πk = 0

If {Π1,Π2} is a POVM that’s unambiguous in the sense that ⟨ψ1∣Π2∣ψ1⟩ = ⟨ψ2∣Π1∣ψ2⟩ =

0, then the POVM (as always) partitions the identity and

Π1 +Π2 = I

⟨ψ1∣ [Π1 +Π2] ∣ψ2⟩ = ⟨ψ1∣I ∣ψ2⟩

⟨ψ1∣Π1∣ψ2⟩ + ⟨ψ1∣Π2∣ψ2⟩ = ⟨ψ1∣ψ2⟩

⟨ψ1∣0 + 0∣ψ2⟩ = ⟨ψ1∣ψ2⟩

0 = ⟨ψ1∣ψ2⟩
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This is a contradiction, since we assume that ∣ψ1⟩ and ∣ψ2⟩ are non-orthogonal. Working
with POVMs means that we can introduce a third measurement operator, Π0, to the two
dimensional space Span{∣ψ1⟩, ∣ψ2⟩}. Π0 is an “error” operator that gives us enough wiggle
room to keep the measurement unambiguous, without being perfect.

Define

⟨ψ1∣Π1∣ψ1⟩ = p1 ⟨ψ2∣Π2∣ψ2⟩ = p2 ⟨ψ1∣Π2∣ψ1⟩ = ⟨ψ2∣Π1∣ψ2⟩ = 0

⟨ψ1∣Π0∣ψ1⟩ = 1 − p1 = q1 ⟨ψ2∣Π0∣ψ2⟩ = 1 − p2 = q2

so that pj is the probability of successfully detecting ∣ψj⟩ and qj is the failure probability
for ∣ψj⟩. Unambiguity dictates that

Π1 = c1∣ψ
⊥
2 ⟩⟨ψ

⊥
2 ∣

Π2 = c2∣ψ
⊥
1 ⟩⟨ψ

⊥
1 ∣

where ∣ψ⊥j ⟩ ∈ Span{∣ψ1⟩, ∣ψ2⟩} and ⟨ψj ∣ψ
⊥
j ⟩ = 0 uniquely determines ∣ψ⊥j ⟩ up to complex

phase. We can nail it down up to sign by declaring that ⟨ψ1∣ψ
⊥
2 ⟩, ⟨ψ2∣ψ

⊥
1 ⟩ ∈ R.

Plugging this into the definitions we’re using for the POVM we find that

p1 = ⟨ψ1∣Π1∣ψ1⟩ = c1 ∣⟨ψ
⊥
2 ∣ψ1⟩∣

2
p2 = ⟨ψ2∣Π2∣ψ2⟩ = c2 ∣⟨ψ

⊥
1 ∣ψ2⟩∣

2

and making the declaration that

cos(θ) ≡ ∣⟨ψ1∣ψ2⟩∣ sin(θ) ≡ ∣⟨ψ⊥1 ∣ψ2⟩∣ = ∣⟨ψ1∣ψ
⊥
2 ⟩∣

we can write

Π1 =
p1

sin2
(θ)

∣ψ⊥2 ⟩⟨ψ
⊥
2 ∣ Π2 =

p2

sin2
(θ)

∣ψ⊥1 ⟩⟨ψ
⊥
1 ∣

So we have expressions for Π1 and Π2 in terms of (the yet to be determined) p1 and
p2. We already know what Π0 is, because the POVM partitions the identity:

Π0 = I −Π1 −Π2

We know that all three elements of the POVM must be positive operators, and that
puts restrictions on the possible values of pj , qj . In the homework you’ll derive that the
positivity of Π0 ensures that

q1q2 ≥ ∣⟨ψ1∣ψ2⟩∣
2
= cos2(θ)

The probability of an error result is
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Q = Tr [Π0ρ] = Tr [Π0 (r1∣ψ1⟩⟨ψ1∣ + r2∣ψ2⟩⟨ψ2∣)] = r1⟨ψ1∣Π0∣ψ1⟩ + r2⟨ψ2∣Π0∣ψ2⟩ = r1q1 + r2q2

An optimal POVM should minimize Q, so we take q1q2 = ∣⟨ψ1∣ψ2⟩∣
2 and plugging into

Q we get

Q = r1q1 + r2
cos2(θ)

q1

and therefore

0 =
dQ

dq1
= r1 − r2

cos2(θ)

q21

Solving for q1 and repeating the process for q2 we find that

q1 =

√

r2
r1

cos(θ) =

√

r2
r1

∣⟨ψ1∣ψ2⟩∣ q2 =

√

r1
r2

cos(θ) =

√

r1
r2

∣⟨ψ1∣ψ2⟩∣

Any derivative test you’d care to apply demonstrates that this is a minimum and
plugging into Q we find that

Qmin = r1q1 + r2q2 = r1

√

r2
r1

cos(θ) + r2

√

r1
r2

cos(θ) = 2
√

r1r2 cos(θ)

So we have a prescription for constructing an optimal POVM to unambiguously measure

ρ = r1∣ψ1⟩⟨ψ1∣ + r2∣ψ2⟩⟨ψ2∣

using pj = 1 − qj and cos(θ) = ∣⟨ψ1∣ψ2⟩∣,

Π1 =

1 −
√

r2
r1

cos(θ)

sin2
(θ)

∣ψ⊥2 ⟩⟨ψ
⊥
2 ∣ Π2 =

1 −
√

r1
r2

cos(θ)

sin2
(θ)

∣ψ⊥1 ⟩⟨ψ
⊥
1 ∣ Π0 = I −Π1 −Π2

This is not always optimal, since strange things happen when sin(θ) = ∣⟨ψ⊥1 ∣ψ2⟩∣ ≈ 0 or
rj ≈ 0, but that’s the sort of thing that homework is for.
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Exercises

1) Error positive.

From the section on unambiguous state discrimination the declaration was made that in
order for Π0 to be a positive operator (in order for the POVM to exist) q1q2 ≥ ∣⟨ψ1∣ψ2⟩∣

2,
where q1, q2 are the failure probabilities for detection the corresponding states. Here you’ll
figure out where this equation comes from.

Although it isn’t necessary, it may help to use cos(θ) = ∣⟨ψ1∣ψ2⟩∣ and sin(θ) = ∣⟨ψ1∣ψ
⊥
2 ⟩∣ =

∣⟨ψ⊥1 ∣ψ2⟩∣.

a) Write Π1 =
p1

sin2(θ)
∣ψ⊥2 ⟩⟨ψ

⊥
2 ∣, Π2 =

p2
sin2(θ)

∣ψ⊥1 ⟩⟨ψ
⊥
1 ∣, and then Π0 = I −Π1 −Π2 as a 2 × 2

matrix in the {∣ψ1⟩, ∣ψ
⊥
1 ⟩} basis.

b) Find the eigenvalues of Π0.

c) Derive the condition for Π0 to be a positive operator.

2) Fancier isn’t always better.

Sometimes when trying to distinguish states in the ensemble {p(∣ψ1⟩) = r1, p(∣ψ2⟩) = r2}
we get a better success rate using just projective measurements. Define the measurement
operators 1 and 2,

P1 = ∣ψ1⟩⟨ψ1∣ P2 = ∣ψ⊥1 ⟩⟨ψ
⊥
1 ∣

a) Find the probability of seeing each result, given ∣ψ1⟩ then given ∣ψ2⟩.

b) One of the two results is unambiguous since it only occurs for one state. The other
result is a “failure to discriminate” since it can occur for either input. Which operators
and states are which?

c) What is the total failure probability, where “failure” means not being able to say
with certainty which state was measured?

d) In the lecture we saw that the optimal (smallest) failure probabilities for ∣ψ1⟩ and
∣ψ2⟩ are

q1 =

√

r2
r1

∣⟨ψ1∣ψ2⟩∣ q2 =

√

r1
r2

∣⟨ψ1∣ψ2⟩∣
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q1, q2 are probabilities and therefore 0 ≤ q1, q2 ≤ 1. For what values of r1 does the
optimal POVM, {Πj}, from the lecture exist? When should you switch to using the
projection measurement, {Pj}, from this exercise?

3) Tangle free.

In Neumark’s theorem we perform a POVM measurement on space A by entangling it with
some ∣φ⟩ ∈ B using Uab and then doing a projective measurement on B in the {∣m⟩b} basis.

Assume that Uab = Ua ⊗ Ub (it can be expressed as a pair of local operators) and that
the detection operators are defined in the usual way, Am∣ψ⟩a ≡ ⟨m∣bUab∣ψ⟩a∣φ⟩b.

a) Given the state ∣ψ⟩a, what is the probability of result m?

b) What is the effect of measurement m on ∣ψ⟩a?

c) How do your answers to parts a and b change if you change ∣ψ⟩a to the state ∣η⟩a?

d) How do your answers to parts a and b change if you change ∣φ⟩b to the state ∣µ⟩b?

e) Explain what’s happening here. Describe what this POVM is doing to states in A
and why.
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