
QI Lecture 17

Quantum Noise

So far we’ve considered isolated quantum systems and interacting sets of isolated quan-
tum systems. We’ll call the collection of such isolated, controlled systems “the principle
system”. While we hope to control everything about the principle system, nothing is
perfect. The principle system interacts, at least a little, with other systems that we can’t
control or access. We call these systems “the environment”. For example, if a photon
carrying a qubit physically escapes and, say, hits the wall of the lab, then it’s interacting
very strongly with the environment; we have no way of recovering that lost qubit.

Figure 1: All of the interactions between parts of the Principle system, A and B, can be
modeled with unitary operations and entanglement. Interactions with the environment
are no different, but since we can’t monitor or control the environment they manifest as
undisclosed measurements and are modeled with “quantum operators”.

“Quantum operators” map density matrices to density matrices.

ρÐ→ E[ρ]
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We’ve seen before that we can describe undisclosed measurements, with detection op-
erators {Am}, acting on the density matrix ρ as

ρ′ =∑
m

AmρA
†
m

Because this is a POVM, Neumark’s theorem says it’s equivalent to entangling the
state ρ ∈ A to another space, B, and then making an undisclosed measurement in B.
That’s an ideal way to model interactions with the environment; those interactions (like
all interactions) are unitary, and since we can never know the state of the environment,1

we trace over it.
In the context of quantum operations, we write

E[ρ] =∑
m

EmρE
†
m

where Em are the “operation elements”. This is the “Operator Sum Represen-
tation” for a quantum operation. The simplest quantum operators are unitary transfor-
mations:

E[ρ] =∑
m

EmρE
†
m = UρU †

The operator sum representation is more generalized than POVMs, because while a
POVM maps states to states in the same space, quantum operations don’t necessarily map
to the same space. Not even the dimension of the space needs to stay the same for quantum
operations.

Example The trace and partial trace are both quantum operations. Define the target
space to be one dimensional, B ≡ Span{∣0⟩b}, and define the operation elements to be

Ej = ∣0⟩b⟨j∣a

then it follows that

E[ρ] =∑
j

EjρE
†
j =∑

j

∣0⟩b⟨j∣aρ∣j⟩a⟨0∣b = ∣0⟩b

⎡
⎢
⎢
⎢
⎢
⎣

∑

j

⟨j∣aρ∣j⟩a

⎤
⎥
⎥
⎥
⎥
⎦

⟨0∣b = Tr [ρ] ∣0⟩b⟨0∣b

We can do something similar for the partial trace. Define Ek ∶ A⊗B Ð→ A as

1Some states in the environment we can be aware of, for example, the street address of your quantum
lab. And when a photon is lost you know that it’s still somewhere nearby (it’s on its forward light cone
until it runs into something). However, the polarization state (for example) of a single escaped photon is
lost and unknowable in every useful sense.
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Ek

⎡
⎢
⎢
⎢
⎢
⎣

∑

j

αj ∣vj⟩a∣j⟩b

⎤
⎥
⎥
⎥
⎥
⎦

≡ αk∣vk⟩a

where ∣vj⟩a ∈ A are arbitrary states and E[ρ] = ∑kEkρE
†
k. We can write any density

matrix in A⊗B as

ρ =∑
jk

Cjk ⊗ ∣j⟩b⟨k∣b

where Cjk ∈ A. It follows that

E[ρ] =∑
k

Ek
⎛

⎝

∑

ij

Cij ⊗ ∣i⟩b⟨j∣b
⎞

⎠

E†
k =∑

k

Ckk = Trb

⎡
⎢
⎢
⎢
⎢
⎣

∑

jk

Cjk ⊗ ∣j⟩b⟨k∣b

⎤
⎥
⎥
⎥
⎥
⎦

= Trb [ρ]

In other words, E[ρ] and Trb[ρ] are equal because they do the same thing.

∎

The operator sum representation isn’t unique. In fact, there’s a simple relationship
between indistinguishable quantum operations.

Theorem (Unitary Freedom in the Operator Sum Representation). Suppose {E1,E2, . . . ,Em}

and {F1, F2, . . . , Fn} are the operation elements for quantum operations E and F . Assum-
ing, without loss of generality, that m ≥ n, we can “pad” {F1, F2, . . . , Fn,0,0 . . .} so that
the two sets have the same number of operations.
E = F if and only if ∃ujk ∈ C such that Ej = ∑k ujkFk and ujk are the elements of an

m ×m matrix.

There are three important axioms that we’d like from quantum operations and given
those axioms the operator sum representation is the only option.

Theorem (The Operator Sum Representation is the “Correct” Representation). Defining
E as a map that acts on density matrices we can declare the following axioms:

• A1) Tr [E[ρ]] is the probability that the process represented by E occurs for initial
state ρ and therefore 0 ≤ Tr [ρ] ≤ 1.

• A2) For probabilities {pj}, we have that E [∑j pjρj] = ∑j pjE [ρj]. This means that
E is a “convex-linear map”.

• A3) E is “completely positive”, meaning that E[A] is a positive operator for any pos-
itive operator A (not just density operators) and that even if we extend our attention
to a operators on a larger space, (Ea ⊗ Ib) [A] is still a positive operator.
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The map E satisfies all three of these axioms if and only if

E[ρ] =∑
k

EkρE
†
k

for some set of operators, {Ek}, such that ∑kE
†
kEk ≤ I.

When Tr [E[ρ]] = 1 we call E “trace preserving”. The probability of this happening is
1, typically because we’re applying the channel on purpose or just assuming the channel is
being applied (in the case of error) and this is the situation we’ll focus on almost exclusively.

When Tr [E[ρ]] < 1 we say E is “non-trace preserving”. This corresponds to situations
where classical information has been extracted and is being used to influence the behavior of
the channel, such as in teleportation, entanglement distillation, or (as we’ll see in the next
lecture) error correction. We see this in action in teleportation (see lecture 12) because
after Alice performs a Bell-basis measurement she reports the results to Bob who then
executes one of four different procedures on the remaining qubit based on those results.
The channel is changed based on some extracted classical information, and the probability
of each of the possible channels happening is less than 1.

Your Intuition

when you see operations like this

ρ Ð→ E[ρ] =∑
m

EmρE
†
m

should be to think about this in terms of an unrevealed measurement,

ρ Ð→ ρ′ =∑
m

PmρP
†
m =∑

m

p(m)ρm

For example, if Alice and Bob share ∣Φ+⟩ =
∣00⟩+∣11⟩
√

2
and Bob measures his qubit in the

computational basis and shares the result with Alice, then the state of her qubit will be,
with probability 1

2 each,

⟨0∣b∣Φ+⟩

√

1
2

=

√

2⟨0∣b (
∣00⟩ + ∣11⟩

√

2
) = ∣0⟩a

⟨1∣b∣Φ+⟩

√

1
2

=

√

2⟨1∣b (
∣00⟩ + ∣11⟩

√

2
) = ∣1⟩a

On the other hand, if he hides the result but announces that he made the measurement,
then all that Alice can say is “With probability 1

2 each, my qubit is in the state ∣0⟩ or ∣1⟩.”
That ensemble is described by
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ρa = p(0)P0∣Φ+⟩⟨Φ+∣P
†
0 + p(1)P1∣Φ+⟩⟨Φ+∣P

†
1 =

1

2
∣0⟩a⟨0∣a +

1

2
∣1⟩a⟨1∣a ∼

⎡
⎢
⎢
⎢
⎢
⎣

1
2 0

0 1
2

⎤
⎥
⎥
⎥
⎥
⎦

A summation of ket-bras is what it looks like when something is in some quantum state,
but we don’t know which. If Bob finally tells Alice the result of his measurement, then

ρa =
1

2
∣0⟩a⟨0∣a +

1

2
∣1⟩a⟨1∣a Ð→

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

p(0) = 1
2 , P0ρaP0

p(0) =
∣0⟩a⟨a0∣ρa∣0⟩a⟨a0∣

1
2

= ∣0⟩a⟨0∣a

p(1) = 1
2 , P1ρaP1

p(1) =
∣1⟩a⟨a1∣ρa∣1⟩a⟨a1∣

1
2

= ∣1⟩a⟨1∣a

In other words,

The summations in density matrices represent a lack of classical knowledge.

On yet another hand, what if Alice and Bob don’t talk at all? Remember that entangled
systems aren’t magically connected to one another, so nothing that Bob does to his qubit
has any direct impact on it. Whether or not Bob does a measurement, when we don’t have
access to a quantum system we trace over it, so Alice’s density matrix is

ρa = Trb [∣Φ+⟩⟨Φ+∣] = ⟨0∣b∣Φ+⟩⟨Φ+∣0⟩b + ⟨1∣b∣Φ+⟩⟨Φ+∣1⟩b =
1

2
∣0⟩a⟨0∣a +

1

2
∣1⟩a⟨1∣a

In other words,

The summations in density matrices represent having incomplete access to an entangled system.

So here, when we talk about quantum operations using the operator sum representation
we’re considering a very wide variety of channels. Unitary operators,

ρÐ→ UρU †

represent isolated quantum systems, while operator sums,

ρÐ→∑
m

EmρE
†
m

represent systems that are being entangled with the environment; some different, inac-
cessible system.
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The behavior of entangled states is classical, when you have incomplete access to the state.

You should always treat the separate terms in the operator sum representation as being
distinguishable events that someone might know about. When Alice and Bob share ∣Φ+⟩,
Alice’s state is ρa =

1
2 ∣0⟩a⟨0∣a+

1
2 ∣1⟩a⟨1∣a, but if Bob reports a measurement resulting in ∣1⟩b,

then Alice’s state updates, like a classical probability does, to ρa = ∣1⟩a⟨1∣a.

The Bloch Vector

The density matrix for a qubit is a 2 × 2 hermitian matrix with trace 1. Any such matrix
can be written

ρ =
I + r⃗ ⋅ σ⃗

2
=

1

2
([

1 0
0 1

] + rx [
0 1
1 0

] + ry [
0 −i
i 0

] + rz [
1 0
0 −1

])

where r⃗ is the “Bloch vector” for ρ.
In the Bloch sphere representation we can write a pure-state qubit as

∣ψ⟩ = cos(
θ

2
) ∣0⟩ + eiφ sin(

θ

2
) ∣1⟩

meaning that its density matrix is

ρ = ∣ψ⟩⟨ψ∣

=

⎡
⎢
⎢
⎢
⎢
⎣

cos2 ( θ2) e−iφ sin (
θ
2
) cos ( θ2)

eiφ sin (
θ
2
) cos ( θ2) sin2

(
θ
2
)

⎤
⎥
⎥
⎥
⎥
⎦

=
1
2

⎡
⎢
⎢
⎢
⎢
⎣

1 + cos (θ) e−iφ sin (θ)

eiφ sin (θ) 1 − cos (θ)

⎤
⎥
⎥
⎥
⎥
⎦

=
1
2

⎡
⎢
⎢
⎢
⎢
⎣

1 + cos(θ) cos(φ) sin(θ) − i sin(φ) sin(θ)

cos(φ) sin(θ) + i sin(φ) sin(θ) 1 − cos(θ)

⎤
⎥
⎥
⎥
⎥
⎦

=
1
2 [

1 0
0 1

] + cos(φ) sin(θ) [
0 1
1 0

] + sin(φ) sin(θ) [
0 −i
i 0

] + cos(θ) [
1 0
0 −1

]

=
I+r⃗⋅σ⃗

2

where r⃗ = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)). Notice that

∥r⃗∥ =
√

cos2(φ) sin2
(θ) + sin2

(φ) sin2
(θ) + cos2(θ) =

√

sin2
(θ) + cos2(θ) = 1
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Therefore, the Bloch vector for a pure state has magnitude 1. On the other hand, for
a completely mixed state

ρ =
1

2
I ⇒ ∥r⃗∥ = 0

The Bloch vector is a decent measure of the purity of a qubit.

We can use the Bloch vector to see how different kinds of noise affect qubits.

Bit, Phase, and Bit-Phase Flip Channel2

These model basic errors that, individually or collectively, model situation-specific errors.

Bit Flip Channel In the bit flip channel, the qubit is left unchanged with probability
1 − p and is flipped, ∣0⟩↔ ∣1⟩, with probability p.

E0 =
√

1 − pI =
√

1 − p [
1 0
0 1

] E1 =
√

pX =

√

p [
0 1
1 0

]

Writing ρ =
I+rxX+ryY +rzZ

2 and using σjσk = δjkI + iεjk`σ`, we can see the affect of the
Bit Flip channel on Bloch vectors:

E[ρ] = E0ρE
†
0 +E1ρE

†
1

= (1 − p)ρ + pXρX

=
1−p
2 (I + rxX + ryY + rzZ) +

p
2X(I + rxX + ryY + rzZ)X

=
1−p
2 (I + rxX + ryY + rzZ) +

p
2
(X2

+ rxX
3
+ ryXYX + rzXZX)

=
1−p
2 (I + rxX + ryY + rzZ) +

p
2 (I + rxX + ryiZX + rziXY )

=
1−p
2 (I + rxX + ryY + rzZ) +

p
2 (I + rxX − ryY − rzZ)

=
1
2I +

1
2rxX + (

1
2 − p) ryY + (

1
2 − p) rzZ

To see what that means, consider what r⃗ = (1,0,0) means:

ρ =
1

2
(I +X) ∼

⎡
⎢
⎢
⎢
⎢
⎣

1
2

1
2

1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎦

∼ ∣+⟩⟨+∣

∣+⟩, the 1-eigenstate of X, is the x-axis of the Bloch sphere. In other words, the ŷ and
ẑ directions contract while the x̂ direction stays the same.

2Say that five times fast.
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If there’s a p = 1
2 probability of a bit flip, then there’s no information whatsoever about

what the bit is, and the Y and Z components of the Bloch vector are destroyed.

∎

Phase Flip Channel

E0 =
√

1 − pI =
√

1 − p [
1 0
0 1

] E1 =
√

pZ =

√

p [
1 0
0 −1

]

E0ρE
†
0 +E1ρE

†
1 = (1 − p)ρ + pZρZ

=
1
2I + (

1
2 − p) rxX + (

1
2 − p) ryY +

1
2rzZ

r⃗ = (0,0,1) ⇒ ρ =
1

2
(I +Z) ∼

⎡
⎢
⎢
⎢
⎢
⎣

1 0

0 0

⎤
⎥
⎥
⎥
⎥
⎦

∼ ∣0⟩⟨0∣

∣0⟩ is the 1-eigenstate of Z and the z axis of the Bloch sphere. Once again, ẑ is left
alone while the other two directions, x̂ and ŷ, contract.

∎

Bit-Phase Flip Channel

E0 =
√

1 − pI =
√

1 − p [
1 0
0 1

] E1 =
√

pY =

√

p [
0 −i
i 0

]

E0ρE
†
0 +E1ρE

†
1 = (1 − p)ρ + pY ρY

=
1
2I + (

1
2 − p) rxX +

1
2ryY + (

1
2 − p) rzZ

r⃗ = (0,1,0) ⇒ ρ =
1

2
(I + Y ) ∼

⎡
⎢
⎢
⎢
⎢
⎣

1
2 −

1
2 i

1
2 i

1
2

⎤
⎥
⎥
⎥
⎥
⎦

∼ (

∣0⟩ + i∣1⟩
√

2
)(

⟨0∣ − i⟨1∣
√

2
)

∣0⟩+i∣1⟩
√

2
is the 1-eigenstate of Y and the y axis of the Bloch sphere. As you may have

been expecting, ŷ is left alone while the other two directions, x̂ and ẑ, contract.

∎
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Depolarization Channel

E[ρ] = (1 − p)ρ + p
1

2
I

The depolarization channel describes a very simple situation: with probability 1 − p
nothing happens to the qubit, and with probability p all of the information is lost. This is
represented by the “completely mixed state”

1

2
I ∼

⎡
⎢
⎢
⎢
⎢
⎣

1
2 0

0 1
2

⎤
⎥
⎥
⎥
⎥
⎦

which is two-dimensional because the system in question is a qubit.

The depolarizing channel is destructive in a very straightforward way; with probability
p, ρ is replaced with the completely mixed state, 1

2I. For p = 1 the qubit is completely
scrambled, so r⃗ → 0, and for p = 0 the qubit is left unharmed. Regardless of the original
ρ the depolarization channel shrinks the Bloch vector, which means that unlike the earlier
channels this one shrinks the Bloch sphere in every direction.

Although the form above, E[ρ] = (1 − p)ρ + p12I, is easier to read, it isn’t written in
terms of operation elements. To change that, we first recognize3 that for any ρ repre-
senting a qubit, we have that I =

ρ+XρX+Y ρY +ZρZ
2 , which implies that the operator sum

representation is

E[ρ] = (1 − p)ρ + p12I

= (1 − p)ρ + p (ρ+XρX+Y ρY +ZρZ4 )

= (1 − 3p
4
)ρ + p

4XρX +
p
4Y ρY +

p
4ZρZ

= ∑
3
j=0EjρE

†
j

where

Ej ≡

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

√

1 − 3p
4 I , j = 0

√
p

2 σj , j ≠ 0

d-Dimensional States

E[ρ] = p
1

d
I + (1 − p)ρ

3This isn’t obvious, which is why you’ll do some homework.

9



is the simple generalization of the Depolarizing Channel for d-dimensional state spaces.
With probability p the state is scrambled/lost, which we represent by replacing it with a
completely mixed state, 1

dI.

Amplitude Damping Channel

One of the states of the qubit, typically ∣0⟩, is indistinguishable from an error. This is a very
reasonable kind of error to encounter when using a “Fock4 Space”, where ∣j⟩ represents
the state of some channel having j photons in it. Typically the places where photons can
be found are called “modes”.

Figure 2: The circuit for amplitude damping. There is some probability that a ∣1⟩ in the
principle mode will give rise to a ∣1⟩ in the environmental mode, determined by θ. The
total number of “photons” should be conserved by this operation, so if the state of the
environment is ∣1⟩, then the CNOT ensures that the state of the principle mode is ∣0⟩.

Being concerned for the moment with qubits, we look at states of the form α∣0⟩ + β∣1⟩.
The loss of a photon can be modeled by coupling the mode to another mode with a beam
splitter, S, and then tracing out over the new mode. If the second mode starts out empty,
then

S [α∣0⟩a + β∣1⟩a] ∣0⟩b = α∣0⟩a∣0⟩b + β cos(θ)∣1⟩a∣0⟩b + β sin(θ)∣0⟩a∣1⟩b

where θ is just a parameter to describe the beam splitter; when θ = 0 all the light
passes through and when θ = π

2 all of the light gets redirected. “Amplitude Damping” is
so important, that its quantum operation gets its own subscript, EAD. If ρ is the density
matrix of the qubit, then the operator sum representation is

EAD[ρ] = ⟨0∣bS (ρ⊗ ∣0⟩b⟨0∣b)S
†
∣0⟩b + ⟨1∣bS (ρ⊗ ∣0⟩b⟨0∣b)S

†
∣1⟩b = E0ρE

†
0 +E1ρE

†
1

where

Ej = ⟨j∣bS∣0⟩b

4Careful here. That’s “Fock” as in “lock” not “luck”.
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Although it is not at all obvious from the notation, the operation elements are maps,
not scalars. Ej ∶ A → A because while S ∶ A⊗B → A⊗B, ∣0⟩b “blocks the input” and ⟨j∣b
“blocks the output” from B.

We find that

E0∣0⟩a = ⟨0∣bS∣0⟩a∣0⟩b = ∣0⟩a E0∣1⟩a = ⟨0∣bS∣1⟩a∣0⟩b = cos(θ)∣1⟩a

E1∣0⟩a = ⟨0∣bS∣0⟩a∣0⟩b = 0 E1∣1⟩a = ⟨0∣bS∣1⟩a∣0⟩b = sin(θ)∣1⟩a

and therefore

E0 = [
1 0
0 cos(θ)

] E1 = [
0 sin(θ)
0 0

]

Clearly the effect of the amplitude damping channel, especially after many applications,
is to pull input states closer to ∣0⟩, and in fact that’s exactly what happens. Writing qubits
using the Bloch vector representation, ρ = I+r⃗⋅σ⃗

2 , we find5 that first after one and then after
many applications

r⃗ =
⎛

⎜

⎝

rx
ry
rz

⎞

⎟

⎠

Ð→

⎛

⎜

⎝

rx cos(θ)
ry cos(θ)

rz cos2(θ) + sin2
(θ)

⎞

⎟

⎠

Ð→

⎛

⎜

⎝

0
0
1

⎞

⎟

⎠

Which should seem about right, since for r⃗ = (0,0,1)

ρ =
I +Z

2
∼ [

1
2 0

0 1
2

] + [

1
2 0

0 −
1
2

] = [
1 0
0 0

] ∼ ∣0⟩⟨0∣

Example In a cavity with a single quanta of energy and a single atom, we can describe
where that energy is using space A for the atom and space B for the EM field of the cavity.

With zero detuning6, the unitary evolution of the system after time t is given by

U(t) = ∣00⟩⟨00∣ + cos(gt) [∣01⟩⟨01∣ + ∣10⟩⟨10∣] − i sin(gt) [∣01⟩⟨10∣ + ∣10⟩⟨01∣]

If the cavity initially has no photons, ∣0⟩b, and the atom starts in a superposition of its
ground and excited states, α∣0⟩a+β∣1⟩a, then the system starts in the state ∣ψ⟩ = α∣00⟩+β∣10⟩
with density matrix

ρ = ρa ⊗ ∣0⟩b⟨0∣b = [α∣0⟩a + β∣1⟩a] [α⟨0∣a + β⟨1∣a]⊗ ∣0⟩b⟨0∣b

If we focus on the state of the atom and trace over the cavity, then we have a quantum
operation.

5Or rather, you’ll find. In the homework.
6The resonant frequency of the cavity and the absorption/emission frequency of the atom are equal.
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E[ρ] = Trb [UρU
†
]

= ⟨0∣bUρU
†
∣0⟩b + ⟨1∣bUρU

†
∣1⟩b

=

⎧
⎪⎪
⎨
⎪⎪
⎩

(∣0⟩a⟨00∣ + cos(gt)∣1⟩a⟨10∣ − i sin(gt)∣1⟩a⟨01∣)ρ (∣00⟩⟨0∣a + cos(gt)∣10⟩⟨1∣a + i sin(gt)∣01⟩⟨1∣a)

+ (cos(gt)∣0⟩a⟨01∣ − i sin(gt)∣0⟩a⟨10∣)ρ (cos(gt)∣01⟩⟨0∣a + i sin(gt)∣10⟩⟨0∣a)

=

⎧
⎪⎪
⎨
⎪⎪
⎩

(∣0⟩a⟨0∣a + cos(gt)∣1⟩a⟨1∣a)ρa (∣0⟩a⟨0∣a + cos(gt)∣1⟩a⟨1∣a)

+ (−i sin(gt)∣0⟩a⟨1∣a)ρa (i sin(gt)∣1⟩a⟨0∣a)

=

⎧
⎪⎪
⎨
⎪⎪
⎩

(∣0⟩a⟨0∣a + cos(gt)∣1⟩a⟨1∣a)ρa (∣0⟩a⟨0∣a + cos(gt)∣1⟩a⟨1∣a)

+ (sin(gt)∣0⟩a⟨1∣a)ρa (sin(gt)∣1⟩a⟨0∣a)

= E0ρaE
†
0 +E1ρaE

†
1

Where, in the {∣0⟩a, ∣1⟩a} basis,

E0 = ⟨0∣bU(t)∣0⟩b ∼ [
1 0
0 cos(gt)

] E1 = ⟨1∣bU(t)∣0⟩b ∼ [
0 sin(gt)
0 0

]

Evidently, the spontaneous emission of a photon (in this case into a cavity) is an example
of amplitude damping for the atom.

∎

Generalized Amplitude Damping

Notice that the amplitude damping channel is a little ideal; photons disappear as though
vanishing into a sink with zero temperature. We can model a non-zero temperature by
assuming that the second mode already has photons that occasionally escape into the
principle mode; this is what makes this channel “Generalized”, EGAD.7

The model for this is

E0 =
√

p [
1 0
0 cos(θ)

] E1 =
√

p [
0 sin(θ)
0 0

]

E2 =
√

1 − p [
cos(θ) 0

0 1
] E3 =

√

1 − p [
0 0

sin(θ) 0
]

7I can’t help but suspect that somebody somewhere insisted on this notation because they think the
word “egad” is funny.

12



With probability p, the regular AD channel is applied and a photon is removed from
the principle mode, and with probability 1− p a photon is added. So here we’re describing
temperature using probabilities. The stationary, equilibrium density matrix is

ρ∞ = [
p 0
0 1 − p

]

and satisfies EGAD [ρ∞] = ρ∞.

Phase Damping

There are many reasons that we can lose track of the relative phase between different
states.

Figure 3: The circuit for phase damping. This circuit is somewhat more “gentle” than
amplitude damping channel. It’s simply a weak measurement of the principle system.

We model phase damping on a qubit,

ρ = ∣ψ⟩ = [α∣0⟩ + β∣1⟩] [α⟨0∣ + β⟨1∣] ∼ [
∣α∣2 αβ∗

α∗β ∣β∣2
]

with a “phase kick”, which is a rotation by Rz(θ), through a random angle θ. Be-
cause Gaussians are both commonly encountered and easy to work with, we describe the
probability distribution of θ to be normally distributed with mean 0 and variance 2µ.

E[ρ] =
1

√

4πµ
∫ [Rz(θ)∣ψ⟩⟨ψ∣R

†
z(θ)] e

−
θ2

4µ dθ ∼ [
∣α∣2 αβ∗e−µ

α∗βe−µ ∣β∣2
]

For the coherent state ∣+⟩ =
∣0⟩+∣1⟩
√

2
there’s an equal chance of measuring this and seeing

either ∣0⟩ or ∣1⟩. The difference between ∣+⟩ and the ensemble {p(∣0⟩) = 1
2 , p(∣1⟩) =

1
2
} is

coherence, which is measured through interference and clearly indicated by the density
matrices

∣+⟩⟨+∣ ∼

⎡
⎢
⎢
⎢
⎢
⎣

1
2

1
2

1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1
2 0

0 1
2

⎤
⎥
⎥
⎥
⎥
⎦
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The phase damping channel strips away the off-diagonal terms (which correspond to
coherence between the basis states) exponentially.

The operation elements for this channel are

E0 = [
1 0

0
√

1 − λ
] E1 = [

0 0

0
√

λ
]

Remarkably, using a =
√

1+
√

1−λ
2 and b =

√

1−
√

1−λ
2 , we have a unitary relationship

F0 = a [
1 0
0 1

] = aE0 + bE1 F1 = b [
1 0
0 −1

] = bE0 − aE1

which means, according to the “Unitary Freedom in the Operator Sum Representation”
theorem as well as the section on the phase flip, that the phase damping channel and the
phase flip channels are the same channel.
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Exercises

1) Depolarization Double Check

When finding a way to write the depolarization channel using operation elements, I flip-
pantly declared that

I =
ρ +XρX + Y ρY +ZρZ

2

and here you’ll prove it. Define

E[A] =

A +XAX + Y AY +ZAZ

4

a) Show that

E[σj] = 0

where σj =X,Y,Z.
(Hint: It may help to use the fact that XY = iZ, Y Z = iX, and ZX = iY .)

b) Show that

E[I] = I

c) Using ρ = I+r⃗⋅σ⃗
2 , show that

I =
ρ +XρX + Y ρY +ZρZ

2

2) Boltzmann From The Blue

For the generalized amplitude damping channel, we can define the temperature, T , of a
qubit in equilibrium using

p(0) =
1

Z

e
−
E0
kBT p(1) =

1

Z

e
−
E1
kBT

where kB is Boltzmann’s constant, Ej is the energy of the state ∣j⟩, and

Z = e
−
E0
kBT + e

−
E1
kBT

What temperature describes the state ρ∞?
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3) Phase

Using E0 = [
1 0

0
√

1 − λ
], E1 = [

0 0

0
√

λ
], and ρ = ∣ψ⟩⟨ψ∣ ∼ [

∣α∣2 αβ∗

α∗β ∣β∣2
] calculate the

effect of the phase damping channel, E[ρ], and write the result as a 2 × 2 density matrix.
Describe the effect in words.

4) Real Bad Amplitude

Using the operation elements from the amplitude damping channel

E0 = [
1 0
0 cos(θ)

] E1 = [
0 sin(θ)
0 0

]

show that the effect on the Bloch vector is

r⃗ =
⎛

⎜

⎝

rx
ry
rz

⎞

⎟

⎠

Ð→

⎛

⎜

⎝

rx cos(θ)
ry cos(θ)

rz cos2(θ) + sin2
(θ)

⎞

⎟

⎠
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