
QI Lecture 18

Quantum Error Correction

Classical Bit-Flip Error Correction

Modern computers are paragons of perfect computation. An ordinary computer tends to
flip bits at a rate of about 1 per 1017 operations. The best that we can expect from quantum
computers today are error rates that hover around 1 error per 100-1000 operations. So error
correction is a very serious concern for quantum computers.

Error correction is nothing new. The oldest method of error correction is redundancy.1

If you send a single bit and there’s a bit-flip error, then it disappears without a ripple.
But if you send three bits, 000 or 111, and one of them gets flipped, then you’ve got two
others to check against. This is called “majority voting” and these tripled bits are called
“logical zero” and “logical one”.

∣0L⟩ ≡ ∣000⟩ ∣1L⟩ ≡ ∣111⟩

If the probability of a single bit flipping is p, where 0 ≤ p ≤ 1
2 , then the probability of

a logical bit flipping (that is, of two or three out of three bits flipping) is p3 + 3p2(1 − p).
Since for 0 < p < 1

2

p3 + 3p2(1 − p) < p

repeating the same bit three times (not surprisingly) is an improvement. In fact, for
very small error rates with p << 1, using logical bits of this kind drops the bit-flip probability
to ≈ 3p2, which is extremely small for small p.

Three Qubit Bit-Flip Error Correction

Quantum information theory has a few things working against it that classical information
doesn’t. First and foremost, in classical information there’s nothing to stop you from
looking at the bits, comparing them, and fixing them (as with majority voting). Quantum
error correct needs to be done “entirely in the dark” since a measured qubit is a bit.

1The oldest method of error correction is redundancy.
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Quantum states can’t be copied the way classical states can be;2 the closest we can get is
to entangled states like this

α∣0⟩ + β∣1⟩ Ð→ α∣000⟩ + β∣111⟩

which we can do with a couple of CNOT gates

Figure 1: A simple circuit to entangle (not copy) states, [α∣0⟩ + β∣1⟩] ∣0⟩∣0⟩ Ð→ α∣000⟩ +
β∣111⟩.

Suppose that all three of these qubits passes through a separate bit-flip channel,

E(ρ) = (1 − p)ρ + pXρX

As long as only one of the channels flips a bit, we can still recover the original state.
There are four “error syndromes” corresponding to the results of a projective measure-
ment {Pj} with projection operations

P0 = ∣000⟩⟨000∣ + ∣111⟩⟨111∣

P1 = ∣100⟩⟨100∣ + ∣011⟩⟨011∣

P2 = ∣010⟩⟨010∣ + ∣101⟩⟨101∣

P3 = ∣001⟩⟨001∣ + ∣110⟩⟨110∣

which allow us to determine which qubit was flipped (1, 2, or 3) or if none were flipped
(0). More importantly, these projective measurements don’t “damage” the states they
measure; the state is left the same (assuming that the only error was a single bit flip).

For each of the four error syndromes there’s a simple fix: simply apply X to the afflicted
bit.

2This is the “no cloning theorem” and we’ll get into it later.
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Example If the third qubit is flipped, then

∣ψ⟩ = α∣000⟩ + β∣111⟩ Ð→ ∣ψ(3)⟩ = α∣001⟩ + β∣110⟩

and therefore the probabilities for each error syndrome are

p(0) = ⟨ψ(3)∣P0∣ψ(3)⟩ = 0

p(1) = ⟨ψ(3)∣P1∣ψ(3)⟩ = 0

p(2) = ⟨ψ(3)∣P2∣ψ(3)⟩ = 0

p(3) = ⟨ψ(3)∣P3∣ψ(3)⟩ = 1

and so the effect on the state of the (guaranteed) result is

P3∣ψ(3)⟩√
p(3)

= [∣001⟩⟨001∣ + ∣110⟩⟨110∣] [α∣001⟩ + β∣110⟩]√
1

= α∣001⟩ + β∣110⟩ = ∣ψ(3)⟩

The amplitudes, α and β, are left unchanged by this measurement!
In this example, the error syndrome is 3, so we can apply X to the third qubit and

recover the original state:

(I ⊗ I ⊗X) [α∣001⟩ + β∣110⟩] = α∣000⟩ + β∣111⟩

∎

Example If the third qubit is flipped, then
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The amplitudes, α and β, are left unchanged by this measurement!
In this example, the error syndrome is 3, so we can apply X to the third qubit and

recover the original state:

(I ⊗ I ⊗X) [α∣001⟩ + β∣110⟩] = α∣000⟩ + β∣111⟩

∎

An alternative measurement for determining the syndrome is to use the observables
Z1Z2 and Z2Z3. This is because

Z1Z2 = [∣0⟩1⟨0∣1 − ∣1⟩1⟨1∣1] [∣0⟩2⟨0∣2 − ∣1⟩2⟨1∣2] = [∣00⟩⟨00∣ + ∣11⟩⟨11∣] − [∣01⟩⟨01∣ + ∣10⟩⟨10∣]

meaning that if the qubits are the same, then we’ll see a “1” result, and if we see a
“-1”, then they must be different. By looking at the results of both Z1Z2 and Z2Z3 we
can determine which qubit has been flipped. If the first qubit is flipped, then 1 and 2 will
be different while 2 and 3 will be the same. If the second qubit is flipped, the 2 will be
different from both 1 and 3.

The error syndromes (the qubit that has been flipped) given the results of these mea-
surements are:

Syndrome Z1Z2 Z2Z3

0 1 1

1 −1 1

2 −1 −1

3 1 −1

Three Qubit Phase-Flip Error Correction

In a phase-flip error, the relative phase between ∣0⟩ and ∣1⟩ is flipped. Since global phase is
unimportant, we can model this with a Z operation, since Z ∣0⟩ = ∣0⟩ and Z ∣1⟩ = −∣1⟩. Since
there’s no classical analog to phase, phase-flip error is a strictly quantum phenomenon.
Despite that, there’s an easy way to turn the phase-flip channel into the bit-flip channel,
allowing us to apply a nearly identical solution. The tripled state α∣000⟩ + β∣111⟩ doesn’t
help us to fix the phase-flip error, in part because there’s no way to tell which qubit was
phase flipped

Z1 ⊗ I2 ⊗ I3∣ψ⟩ = I1 ⊗Z2 ⊗ I3∣ψ⟩ = I1 ⊗ I2 ⊗Z3∣ψ⟩ = α∣000⟩ − β∣111⟩
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This is ultimately because ∣0⟩ and ∣1⟩ are the eigenstates of Z. So, in order to deal
with phase-flips we can change the basis of our qubits back and forth between {∣0⟩, ∣1⟩}
and {∣+⟩, ∣−⟩} and using Hadamard gates.

Figure 2: A circuit to transform [α∣0⟩ + β∣1⟩] ∣0⟩∣0⟩Ð→ α∣ + ++⟩ + β∣ − −−⟩.

Since Z ∶ ∣+⟩ ↔ ∣−⟩, we have essentially changed the phase-flip channel into a bit-flip
channel. For this state the effect of the phase-flip channel

E(ρ) = (1 − p)ρ + pZρZ

is

α∣ + ++⟩ + β∣ − −−⟩Ð→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α∣ − ++⟩ + β∣ + −−⟩
α∣ + −+⟩ + β∣ − +−⟩
α∣ + +−⟩ + β∣ − −+⟩

depending on which qubit is affected. Clearly, this is (in effect) the same as the bit-flip
channel. The measurements we use to produce the error syndromes reflect that

P ′

0 = HP0H = ∣ + ++⟩⟨+ + +∣ + ∣ − −−⟩⟨− − −∣

P ′

1 = HP1H = ∣ − ++⟩⟨− + +∣ + ∣ + −−⟩⟨+ − −∣

P ′

2 = HP2H = ∣ + −+⟩⟨+ − +∣ + ∣ − +−⟩⟨− + −∣

P ′

3 = HP3H = ∣ + +−⟩⟨+ + −∣ + ∣ − −+⟩⟨− − +∣

Since Z = HXH and X = HZH, Hadamard gates also switch back and forth between
X and Z.

0 → I1 ⊗ I2 ⊗ I3
1 → Z1 ⊗ I2 ⊗ I3 = H1X1H1 ⊗ I2 ⊗ I3
2 → I1 ⊗Z2 ⊗ I3 = I1 ⊗H2X2H2 ⊗ I3
3 → I1 ⊗ I2 ⊗Z3 = I1 ⊗ I2 ⊗H3X3H3
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In keeping with the parallels between the bit-flip and phase-flip codes, an alternative
measurement for determining the syndrome is to use the observables X1X2 and X2X3.
This works because

X1X2 = [∣+⟩1⟨+∣1 − ∣−⟩1⟨−∣1] [∣+⟩2⟨+∣2 − ∣−⟩2⟨−∣2] = [∣ + +⟩⟨+ + ∣ + ∣ − −⟩⟨− − ∣]−[∣ + −⟩⟨+ − ∣ + ∣ − +⟩⟨− + ∣]

By looking at the results of both X1X2 and X2X3 we can determine which phase has
been flipped. In what is essentially an exact repeat of the bit-flip error syndrome:

Syndrome X1X2 X2X3

0 1 1

1 −1 1

2 −1 −1

3 1 −1

Example If the second qubit is phase-flipped, then

∣ψ⟩ = α∣ + ++⟩ + β∣ − −−⟩ Ð→ ∣ψ(2)⟩ = α∣ + −+⟩ + β∣ − +−⟩

Applying the observable X1X2 we find that

X1X2∣ψ(2)⟩ = αX1X2∣ + −+⟩ + βX1X2∣ − +−⟩ = (1)(−1)α∣ + −+⟩ + (−1)(1)β∣ − +−⟩ = −∣ψ(2)⟩

meaning that ∣ψ(2)⟩ is a −1 eigenstate of X1X2 and so the result of the observation
must be −1. Taking a step back from the “observable formalism”, the fact that we can
write the spectral decomposition of X1X2 as

X1X2 = (+1)∣ + +⟩⟨+ + ∣ + (+1)∣ − −⟩⟨− − ∣ + (−1)∣ + −⟩⟨+ − ∣ + (−1)∣ − +⟩⟨− + ∣

means that the observable X1X2 is just a short-hand way of talking about the projective
measurement with projective operators P1 = ∣ + +⟩⟨+ + ∣ + ∣ − −⟩⟨− − ∣ and P−1 = ∣ + −⟩⟨+ − ∣ +
∣ − +⟩⟨− + ∣.

Applying the observable X2X3 we find that

X2X3∣ψ(2)⟩ = αX2X3∣ + −+⟩ + βX2X3∣ − +−⟩ = (−1)(1)α∣ + −+⟩ + (1)(−1)β∣ − +−⟩ = −∣ψ(2)⟩

meaning that ∣ψ(2)⟩ is a −1 eigenstate of X2X3 and so the result of the observation
must be −1. We have determined that qubits 1 and 2 have opposite phases (X1X2 Ð→ −1)
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and that qubits 2 and 3 have opposite phases (X2X3 Ð→ −1), meaning that qubit 2 must
have been phase-flipped (assuming there was only one phase-flipping).

Because the error syndrome is 2, so we apply Z to the second qubit and recover the
original state:

(I1 ⊗Z2 ⊗ I3) [α∣ + −+⟩ + β∣ − +−⟩] = α∣ + ++⟩ + β∣ − −−⟩

∎

Shor Code

Remarkably, we can describe any arbitrary qubit error as a combination of bit-flip and
phase-flip errors, and we can repair them using a combination of the two corrective proce-
dures: the Shor code.

Figure 3: The circuit for creating the Shor Code’s logical qubits.

This is created by first running the qubit through the circuit used for the phase-flip
code
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∣0⟩ Ð→ ∣+⟩∣+⟩∣+⟩ = (∣0⟩ + ∣1⟩√
2

)(∣0⟩ + ∣1⟩√
2

)(∣0⟩ + ∣1⟩√
2

)

∣1⟩ Ð→ ∣−⟩∣−⟩∣−⟩ = (∣0⟩ − ∣1⟩√
2

)(∣0⟩ − ∣1⟩√
2

)(∣0⟩ − ∣1⟩√
2

)

and then running all three of those qubits through the circuit used for the bit-flip code
to yield the 9-qubit3 Shor code

∣0L⟩ ≡ (∣0⟩∣0⟩∣0⟩ + ∣1⟩∣1⟩∣1⟩√
2

)(∣0⟩∣0⟩∣0⟩ + ∣1⟩∣1⟩∣1⟩√
2

)(∣0⟩∣0⟩∣0⟩ + ∣1⟩∣1⟩∣1⟩√
2

)

∣1L⟩ ≡ (∣0⟩∣0⟩∣0⟩ − ∣1⟩∣1⟩∣1⟩√
2

)(∣0⟩∣0⟩∣0⟩ − ∣1⟩∣1⟩∣1⟩√
2

)(∣0⟩∣0⟩∣0⟩ − ∣1⟩∣1⟩∣1⟩√
2

)

The Shor Code encodes the state

∣ψ⟩ = α∣0⟩ + β∣1⟩ Ð→ ∣ψL⟩ = α∣0L⟩ + β∣1L⟩

where ∣ψL⟩ is non-standard, but not unreasonable, notation.

Shor Error Syndrome

The Shor code corrects both bit-flip and phase-flip errors on each of its nine qubits. To
determine the error syndrome, we can look for bit-flips and phase-flips separately.

First, we’ll check for bit flips by checking all three blocks, one at a time, in the same
way that we did for the bit-flip code using

P0 = ∣000⟩⟨000∣ + ∣111⟩⟨111∣

P1 = ∣100⟩⟨100∣ + ∣011⟩⟨011∣

P2 = ∣010⟩⟨010∣ + ∣101⟩⟨101∣

P3 = ∣001⟩⟨001∣ + ∣110⟩⟨110∣

or the observables Z1Z2 and Z2Z3 (followed by Z4Z5 and Z5Z6, then Z7Z8 and Z8Z9).

A phase-flip on any one of the qubits in a block flips the sign of the entire block. For
example,

Z3 [∣0⟩1∣0⟩2∣0⟩3 + ∣1⟩1∣1⟩2∣1⟩3] = ∣0⟩1∣0⟩2∣0⟩3 + ∣1⟩1∣1⟩2 (−∣1⟩3) = ∣0⟩1∣0⟩2∣0⟩3 − ∣1⟩1∣1⟩2∣1⟩3
3There’s also a 5 qubit Shor code
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So when determining this second half of the error syndrome, the phase-flip, we can
check entire blocks at a time. We can do that by comparing the same/different-ness using
the observables X1X2X3X4X5X6 and then X4X5X6X7X8X9.

This works because, for example, if the phase between the first two blocks is different,
then

X1X2X3X4X5X6 ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
)

= ( ∣1⟩∣1⟩∣1⟩+∣0⟩∣0⟩∣0⟩√

2
) ( ∣1⟩∣1⟩∣1⟩−∣0⟩∣0⟩∣0⟩√

2
)

= − ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
)

and if they’re the same

X1X2X3X4X5X6 ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
)

= ( ∣1⟩∣1⟩∣1⟩−∣0⟩∣0⟩∣0⟩√

2
) ( ∣1⟩∣1⟩∣1⟩−∣0⟩∣0⟩∣0⟩√

2
)

= (−1)(−1) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
)

= ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
)

Recovery

To recover from a bit-flip error, we just flip the qubit back by applying the appropriate Xj .
To recover from a phase-flip error, we can apply Z1Z2Z3, Z4Z5Z6, or Z7Z8Z9 to the

appropriate block.

Example (fixing bit-flips) Sadly, the fourth qubit has been bit-flipped and the
state of the logical qubit is

α (⋯)( ∣1⟩∣0⟩∣0⟩ + ∣0⟩∣1⟩∣1⟩√
2

)(⋯) + β (⋯)( ∣1⟩∣0⟩∣0⟩ − ∣0⟩∣1⟩∣1⟩√
2

)(⋯)

and we have to find and correct the error.

First, we apply the bit-flip measuring projection operators, {P0}, to each of the three
blocks. On the first and third blocks the error syndrome is 0, but on the second the error
syndrome is 1. Evidently, the first qubit in the second block (the fourth qubit overall) has
been flipped.
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Second, we check for phase flips using X1X2X3X4X5X6 and then X4X5X6X7X8X9.
The flipped qubit has no effect here, since

X4X5X6 (
∣1⟩∣0⟩∣0⟩ + ∣0⟩∣1⟩∣1⟩√

2
) = (∣1⟩∣0⟩∣0⟩ + ∣0⟩∣1⟩∣1⟩√

2
)

X4X5X6 (
∣1⟩∣0⟩∣0⟩ − ∣0⟩∣1⟩∣1⟩√

2
) = −(∣1⟩∣0⟩∣0⟩ − ∣0⟩∣1⟩∣1⟩√

2
)

which is exactly what we’d expect from the second block if the fourth qubit hadn’t
been flipped. Therefore the results of the two observables are 1 and 1, so the phase-flip
error syndrome is 0: no phase flip.

Finally, to fix the bit-flip error on the fourth qubit, we apply X4.

X4 [α (⋯)( ∣1⟩∣0⟩∣0⟩ + ∣0⟩∣1⟩∣1⟩√
2

)(⋯) + β (⋯)( ∣1⟩∣0⟩∣0⟩ − ∣0⟩∣1⟩∣1⟩√
2

)(⋯)] = ∣ψL⟩

and recover the original state.

∎

Example (fixing phase-flips) Inexplicably, the eighth qubit in ∣ψL⟩ has been phase-
flipped, leaving the logical qubit in the state

∣ψL⟩Ð→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
)

+β ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
)

Once again, we don’t know where/what/if the error is, so we’ll start by checking for bit
flips. Using the Z1Z2, Z2Z3, then Z4Z5, Z5Z6, then Z7Z8, Z8Z9 (because we already used
the projection operators {Pj} in the last example) we can check for bit-flip errors. Doing
this sort of thing six times

Z1Z2 [α ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) (⋯)(⋯) + β ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) (⋯)(⋯)]

= [α ( ∣0⟩∣0⟩∣0⟩+(−1)(−1)∣1⟩∣1⟩∣1⟩√

2
) (⋯)(⋯) + β ( ∣0⟩∣0⟩∣0⟩−(−1)(−1)∣1⟩∣1⟩∣1⟩√

2
) (⋯)(⋯)]

= [α ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) (⋯)(⋯) + β ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) (⋯)(⋯)]

we find that there are no bit-flip errors.

Using X1X2X3X4X5X6 and then X4X5X6X7X8X9 we can check for phase flip errors.
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X1X2X3X4X5X6 [α ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) (⋯) + β ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) (⋯)]

= [α ( ∣1⟩∣1⟩∣1⟩+∣0⟩∣0⟩∣0⟩√

2
) ( ∣1⟩∣1⟩∣1⟩+∣0⟩∣0⟩∣0⟩√

2
) (⋯) + β ( ∣1⟩∣1⟩∣1⟩−∣0⟩∣0⟩∣0⟩√

2
) ( ∣1⟩∣1⟩∣1⟩−∣0⟩∣0⟩∣0⟩√

2
) (⋯)]

= [α ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) (⋯) + β(−1)(−1) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) (⋯)]

= [α ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) (⋯) + β ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) (⋯)]

Blocks one and two have matching phase.

X4X5X6X7X8X9 [α(⋯) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) + β(⋯) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
)]

= [α(⋯) ( ∣1⟩∣1⟩∣1⟩+∣0⟩∣0⟩∣0⟩√

2
) ( ∣1⟩∣1⟩∣1⟩−∣0⟩∣0⟩∣0⟩√

2
) + β(⋯) ( ∣1⟩∣1⟩∣1⟩−∣0⟩∣0⟩∣0⟩√

2
) ( ∣1⟩∣1⟩∣1⟩+∣0⟩∣0⟩∣0⟩√

2
)]

= [α(1)(−1)(⋯) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) + β(−1)(1)(⋯) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
)]

= − [α(⋯) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) + β(⋯) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
)]

Blocks two and three do not have matching phase, so evidently the third block has
experienced a phase-flip error.

In order to fix this phase-flip on the third block (it doesn’t matter that it was specifically
the eighth qubit) we apply Z7Z8Z9.

Z7Z8Z9 [α(⋯)(⋯) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) + β(⋯)(⋯) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
)]

= [α(⋯)(⋯) ( ∣0⟩∣0⟩∣0⟩−(−1)(−1)(−1)∣1⟩∣1⟩∣1⟩√

2
) + β(⋯)(⋯) ( ∣0⟩∣0⟩∣0⟩+(−1)(−1)(−1)∣1⟩∣1⟩∣1⟩√

2
)]

= [α(⋯)(⋯) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) + β(⋯)(⋯) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
)]

= ∣ψL⟩

∎

Measurement as a Tool

Example In the last two examples we used measurements to get information about
the state; to find out if there has been a bit or phase flip error. But measurements them-
selves have an impact on the state: they project the state into predetermined subspaces,
the range of the detection operators {Aj}. Knowing the result of the measurement means
we can intelligently control the result.
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Say you’d like to produce lots of horizontally polarized light and all you’ve got is a
completely random blackbody source (a light bulb). Maybe you’re building half of a big
3D movie projector or something. You could just put a horizontal polarizing filter in
front of your light source, but half of your light is immediately lost (to a rapidly heating
polarizer).

Instead of a horizontal filter, which destroys the vertical photons, we could use a po-
larizing beam splitter (PBS) to reflect the vertical photons. On that second path we place
a π

2 polarization rotator4 to convert the vertical to horizontal photons. The only trace of

the original state is in the intensity of light in the two beams, ∣⟨0∣ψ⟩∣2 = Tr [∣0⟩⟨0∣ρ] and
∣⟨1∣ψ⟩∣2.

Figure 4: Making every photon horizontally polarized using “error correction”. We measure
the polarization in the {∣0⟩, ∣1⟩} basis using a polarizing beam splitter, reflecting vertical
photons, ∣0⟩, and transmitting horizontal photons, ∣1⟩. “Correct” horizontal results are left
alone and “error” vertical results are “repaired” using with a π

2 polarization rotation.

It may bother you that the horizontal light is on two channels. This is a good way
to think about error correction; the measurement yields a result that we remember and
which governs how we repair it, so the final state isn’t just “horizontal”, it’s “horizontal
and you fixed it”. The measurement result is an active part of the larger system, and in
this case that result is “recorded” on the photon’s “which path” information.

Example (“unmeasuring”) Someone in the lab looked up at the wrong time and
accidentally measured the first qubit. It’s a ∣1⟩1.

The probability of that having happened is

p (∣1⟩1) = ∣⟨11∣ψL⟩∣2 =
∣α∣2 + ∣β∣2

2
= 1

2

so the impact of this measurement is

4Sugar water rotates the polarization of light that passes through it, so this is not some profound,
micro-controlled laboratory-only operations.

12



∣ψL⟩
∣1⟩1ÐÐ→ ∣ψe⟩ =

√
2∣1⟩1⟨1∣1∣ψL⟩ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

α (∣1⟩∣1⟩∣1⟩) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
)

+β (−∣1⟩∣1⟩∣1⟩) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
)

Where ∣ψe⟩ is the new “error state”. As before, we begin by checking for bit-flip errors
using the projection measurement, {Pj}, on each block. For the first block, the probability
of each error syndrome is

p(0) = ⟨ψe∣P0∣ψe⟩ = 1

p(1) = ⟨ψe∣P1∣ψe⟩ = 0

p(2) = ⟨ψe∣P2∣ψe⟩ = 0

p(3) = ⟨ψe∣P3∣ψe⟩ = 0

because P0 = ∣000⟩⟨000∣ + ∣111⟩⟨111∣. The bit-flip error syndrome is always zero, so we
nothing to the state and ∣ψe⟩ is passed on to the phase-flip check.

To check for phase-flip errors we use X1X2X3X4X5X6 and X4X5X6X7X8X9. The
latter yields a result of 1 (meaning that the phase of the second and third blocks is the
same). The former does something interesting.

Since X1X2X3X4X5X6 =X1X2X3 ⊗X4X5X6, where

X4X5X6 (
∣0⟩∣0⟩∣0⟩ + ∣1⟩∣1⟩∣1⟩√

2
) = (∣0⟩∣0⟩∣0⟩ + ∣1⟩∣1⟩∣1⟩√

2
)

X4X5X6 (
∣0⟩∣0⟩∣0⟩ − ∣1⟩∣1⟩∣1⟩√

2
) = −(∣0⟩∣0⟩∣0⟩ − ∣1⟩∣1⟩∣1⟩√

2
)

and we already know exactly what X4X5X6 is going to do with the intact second block
in ∣ψe⟩, we’ll concentrate just on X1X2X3 and the first block, ∣111⟩.

The projection operators for the observable X1X2X3 are

P (−1) = ∣ − −−⟩⟨− − −∣ + ∣ + +−⟩⟨+ + −∣ + ∣ + −+⟩⟨+ − +∣ + ∣ − ++⟩⟨− + +∣

P (1) = ∣ + ++⟩⟨+ + +∣ + ∣ − −+⟩⟨− − +∣ + ∣ − +−⟩⟨− + −∣ + ∣ + −−⟩⟨+ − −∣

since ∣⟨+∣1⟩∣2 = ∣⟨−∣1⟩∣2 all eight of these individual projections, and therefore the two
measurement operators, are equally likely, so p(1) = p(−1) = 1

2 .
Again, because all eight of these individual projections are equally likely, the effects of

these two measurements are:
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P (1)∣111⟩
√

1
2

= 1
2 ∣ + ++⟩ +

1
2 ∣ − −+⟩ +

1
2 ∣ − +−⟩ +

1
2 ∣ + −−⟩

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4
√

2
[∣000⟩ + ∣001⟩ + ∣010⟩ + ∣011⟩ + ∣100⟩ + ∣101⟩ + ∣110⟩ + ∣111⟩]

+ 1
4
√

2
[∣000⟩ + ∣001⟩ − ∣010⟩ − ∣011⟩ − ∣100⟩ − ∣101⟩ + ∣110⟩ + ∣111⟩]

+ 1
4
√

2
[∣000⟩ − ∣001⟩ + ∣010⟩ − ∣011⟩ − ∣100⟩ + ∣101⟩ − ∣110⟩ + ∣111⟩]

+ 1
4
√

2
[∣000⟩ − ∣001⟩ − ∣010⟩ + ∣011⟩ + ∣100⟩ − ∣101⟩ − ∣110⟩ + ∣111⟩]

= ∣000⟩+∣111⟩
√

2

P (−1)∣111⟩
√

1
2

= −1
2 ∣ − −−⟩ −

1
2 ∣ + +−⟩ −

1
2 ∣ + −+⟩ −

1
2 ∣ − ++⟩

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
4
√

2
[∣000⟩ − ∣001⟩ − ∣010⟩ + ∣011⟩ − ∣100⟩ + ∣101⟩ + ∣110⟩ − ∣111⟩]

− 1
4
√

2
[∣000⟩ − ∣001⟩ + ∣010⟩ − ∣011⟩ + ∣100⟩ − ∣101⟩ + ∣110⟩ − ∣111⟩]

− 1
4
√

2
[∣000⟩ + ∣001⟩ − ∣010⟩ − ∣011⟩ + ∣100⟩ + ∣101⟩ − ∣110⟩ − ∣111⟩]

− 1
4
√

2
[∣000⟩ + ∣001⟩ + ∣010⟩ + ∣011⟩ − ∣100⟩ − ∣101⟩ − ∣110⟩ − ∣111⟩]

= −∣000⟩+∣111⟩
√

2

So the possible results are
∣000⟩+∣111⟩
√

2
or − ∣000⟩−∣111⟩√

2
. Remember that we’re applying

X1X2X3X4X5X6 =X1X2X3⊗X4X5X6, so the 1 result corresponds to ( ∣0⟩∣0⟩∣0⟩±∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩±∣1⟩∣1⟩∣1⟩√

2
)

and the -1 result corresponds to ( ∣0⟩∣0⟩∣0⟩±∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩∓∣1⟩∣1⟩∣1⟩√

2
). In other words, the orig-

inal “broken” state

∣ψe⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α (∣1⟩∣1⟩∣1⟩) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
)

+β (−∣1⟩∣1⟩∣1⟩) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
)

is “collapsed” by the phase-flip measurement into either

∣ψ(1)e ⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
)

+β ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
)

or

∣ψ(−1)e ⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−α ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
)

−β ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
)
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So, with a result of −1 we know that the phases of blocks one and two don’t match and,
combined with the result from X4X5X6X7X8X9, we know that block one has a flipped
phase. Applying Z1Z2Z3:

Z1Z2Z3∣ψ(−1)e ⟩ = −∣ψL⟩

which (ignoring the global phase) is the original logical qubit restored!
We found that there were no bit-flips, and with a result of 1, we confirm that the phases

of all three blocks match. Evidently there’s nothing to do, and indeed a quick look at ∣ψ(1)e ⟩
verifies that.

∣ψ(1)e ⟩ = ∣ψL⟩

∎

This is remarkable. I mean seriously, this is a moment to turn off the music, sit down
and ponder.

When we pass diagonally polarized light through a vertical/horizontal beam splitter,
we’re asking the photon “Are you vertical or horizontal?” and even though the photon
isn’t either (it’s a superposition), we find that it always “answers” the question anyway,
and will subsequently be found to be one or the other. Even though there are a continuous
range of possible polarizations, the beam splitter finds that every photon is either vertical
or horizontal every time. The same thing is happening here.

By measuring the error syndrome, we not only discover what the error is, but we force
the error to take a form that we can manage. Even though we have to contend with an
infinite, continuous set of errors, the mere act of asking “Bit-flip or phase-flip?” forces the
corrupted state into one of a finite set of “fixable states”, related to the logical qubit by
no more than a simple bit-flip and/or phase-flip.

In this last example, we committed the greatest sin that can be done in quantum
information: we observed a qubit ahead of schedule. But the Shor Code turned that error
into either nothing half the time or a phase flip the other half of the time. A simple, easy
to fix, and most important standard error.

It’s like a guy going to the hospital with a broken foot, where the receptionist asks “Is
your nose running?” He finds that his nose is in fact running, so the receptionist hands
him a handkerchief from a pile and, with his problem solved, he leaves the hospital without
ever needing to see a doctor.
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Exercises

The “logical qubit” that represents ∣ψ⟩ = α∣0⟩ + β∣1⟩ in the Shor Code is

∣ψL⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

α ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩+∣1⟩∣1⟩∣1⟩√

2
)

+β ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
) ( ∣0⟩∣0⟩∣0⟩−∣1⟩∣1⟩∣1⟩√

2
)

1) See Shor

The fifth qubit has suffered both a phase-flip error and a bit-flip error.

a) What is the state, ∣ψe⟩ =X5Z5∣ψL⟩, of the corrupted logical qubit?

b) Using the appropriate measurements and repair operations, check for bit-flip errors
and fix any you find.

c) Using the appropriate measurements and repair operations, check for phase-flip errors
and fix any you find.

You should have recovered ∣ψL⟩ at the end of this step.

2) Not A Shor Thing

The seventh and ninth qubits have both suffered bit-flip errors.

a) What is the state, ∣ψe⟩ =X7X9∣ψL⟩, of the corrupted logical qubit?

b) Using the appropriate measurements and repair operations, check for bit-flip errors
and fix any you find.

c) Using the appropriate measurements and repair operations, check for phase-flip errors
and fix any you find.

d) What went wrong?

3) Shor-ly Not Another Shor Pun

Show that using the observables Z1Z2 followed by Z2Z3 is equivalent to using the four
projection operators, {P0 = ∣000⟩⟨000∣ + ∣111⟩⟨111∣, P1 = ∣100⟩⟨100∣ + ∣011⟩⟨011∣, . . .}, by di-
rect calculation.

Remember that using the observable Z1Z2 means using the projection operators corre-
sponding to the eigenstates, P (1) = [∣00⟩⟨00∣ + ∣11⟩⟨11∣]⊗I3, P (−1) = [∣01⟩⟨01∣ + ∣10⟩⟨10∣]⊗I3.
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