
QI Lecture 21

Coherence and The Quantum Eraser

The Set Up

Define A to be the “photon space”, composed of N paths, and the state of a photon in
path j as ∣j⟩a ∈ A. Define B to be the “detector space” with ∣ηk⟩b ∈ B and ∣η0⟩b the state
of the detector before interacting with the photons in system A. We’d like to investigate
and quantify the coherence in A given a measurement by B.

The initial state of the system is

∣ψ⟩ =
⎛
⎝∑j

√
p(j)∣j⟩a

⎞
⎠
∣η0⟩b

where p(j) is the probability of the photon being found on path j. The interaction
with the detector is given by

U ∣ψ⟩ = ∑
j

√
pjU [∣j⟩a∣η0⟩b] = ∑

j

√
pj ∣j⟩a∣ηj⟩b

This detector may not be perfect, so we we’ll assume that in general ⟨ηj ∣ηk⟩ ≠ δjk. The
reduced density matrices are

ρa = ∑
jk

√
pjpk⟨ηj ∣ηk⟩b∣k⟩a⟨j∣a ρb = ∑

j

pj ∣ηj⟩b⟨ηj ∣b

Notice that if the detector states are orthogonal, then the detector states perfectly label
the paths, and if the detector states are are equal, then the original state can be factored
out (and is thus unaffected).

Quantifying Coherence

A good way to quantify the coherence of ρ with respect to some basis, {∣k⟩}, is the “Rel-
ative Entropy Coherence Measure”

C [ρ] ≡ S [ρd] − S [ρ]
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where ρd is equal to ρ on its diagonal, and zero otherwise,

ρd ≡ ∑
k

∣k⟩⟨k∣ρ∣k⟩⟨k∣

Example Find the coherence of a completely mixed qubit, a photon polarized at
angle θ, and a Bell state.

ρ = 1

2
∣0⟩⟨0∣ + 1

2
∣1⟩⟨1∣ ∼

⎡⎢⎢⎢⎢⎣

1
2 0

0 1
2

⎤⎥⎥⎥⎥⎦

θ = ∣θ⟩⟨θ∣ ∼ [ cos2(θ) sin(θ) cos(θ)
sin(θ) cos(θ) sin2(θ) ]

ξ = (∣00⟩ + ∣11⟩√
2

)(⟨00∣ + ⟨11∣√
2

) ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 0 0 1

2

0 0 0 0

0 0 0 0

1
2 0 0 1

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We easily find that

ρd =
1

2
∣0⟩⟨0∣ + 1

2
∣1⟩⟨1∣ ∼

⎡⎢⎢⎢⎢⎣

1
2 0

0 1
2

⎤⎥⎥⎥⎥⎦

θd = cos2(θ)∣0⟩⟨0∣ + sin2(θ)∣1⟩⟨1∣ ∼ [ cos2(θ) 0
0 sin2(θ) ]

ξd =
1

2
∣00⟩⟨00∣ + 1

2
∣11⟩⟨11∣ ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The entropy of the diagonal density matrices are just the Shannon entropy of their

entries. θ and ξ are both pure states, and therefore

C[ρ] = S[ρd] − S[ρ] = 1 − 1 = 0

C[θ] = S[θd] − S[η] =H [{cos2(θ), sin2(θ)}] − 0 =H [{cos2(θ), sin2(θ)}]
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C[ξ] = S[ξd] − S[ξ] = 1 − 0 = 1

Predictably, the classical mixed state, 1
2 ∣0⟩⟨0∣ +

1
2 ∣1⟩⟨1∣, has zero coherence. ∣Φ+⟩ is an

even superposition of two basis states, with 1 bit1 of coherence.
Coherence is a measure of the superposition of two basis states. Considering the state

θ, we see that

C [0] = C [π
2
] = 0

which corresponds to ∣θ⟩ = ∣0⟩, ∣1⟩. The coherence is maximized for

C [π
4
] = C [−π

4
] = 1

corresponding to ∣θ⟩ = ∣±⟩ = ∣0⟩±∣1⟩√

2
.

∎

Quantifying Which-Path Information

Alice could use the paths to send information by explicitly choosing to send each photon
via ∣x⟩ with probability p(x). We’ll define the “which path information” as the mutual
information between Alice and Bob. This is literally the amount of information that Bob
has about which path the photon takes.

In order to determine which path the photon took, Bob uses a POVM, {Πy}, on the
detector states. We have that

p(y∣x) = Tr [Πy ∣ηx⟩⟨ηx∣]

p(x, y) = p(x)p(y∣x) = p(x)Tr [Πy ∣ηx⟩⟨ηx∣]

p(y) = ∑
x

p(x, y) = ∑
x

p(x)Tr [Πy ∣ηx⟩⟨ηx∣] = Tr [Πy (∑
x

p(x)∣ηx⟩⟨ηx∣)] = Tr [Πyρb]

which is all we need to define the mutual information between the measurement results,
Y , and the state preparation, X.

1Since we’re using information theoretic measures, we may as well inherit the units.
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I[X;Y ] ≡H[Y ] −H[Y ∣X] = −∑
y

p(y) log(p(y)) +∑
x

p(x)
⎡⎢⎢⎢⎣
∑
y

p(y∣x) log(p(y∣x))
⎤⎥⎥⎥⎦

or actually plugging everything in

I[X;Y ] ≡H [{Tr [Πyρb]}y] −∑
x

p(x)H [{Tr [Πy ∣ηx⟩⟨ηx∣]}y]

where the probability distributions used in the Shannon entropies are indexed with y.
We have just set up exactly the situation needed to apply Holevo’s Bound (lecture 20).

I[X;Y ] ≤ S [∑
x

p(x)∣ηx⟩⟨ηx∣] −∑
x

p(x)S[∣ηx⟩⟨ηx∣] = S [ρb] − 0 = S [ρb]

Uncertainty In Coherence and Which Path Information

The coherence of the photons between the paths in A is

C [ρa] ≡ S [∑
k

√
pkpk⟨ηk∣ηk⟩b∣k⟩a⟨k∣a]−S [ρa] = S [∑

k

pk∣k⟩a⟨k∣a]−S [ρa] =H [{pk}]−S [ρa]

H [{pk}] is determined entirely by the pre-measurement photon state, ∑j
√
p(j)∣j⟩a.

We’ll call the the “Preparation Entropy”, because it describes how spread out the state is
over the N paths.

The state of the full system is

ρ = U ∣ψ⟩⟨ψ∣U † =
⎛
⎝∑j

√
p(j)∣j⟩a∣ηj⟩b

⎞
⎠
(∑
k

√
p(k)⟨k∣a⟨ηk∣b)

which is pure. Therefore, the entropy of the reduced densities matrices are equal to
each other and the entanglement between the systems, S[ρa] = S[ρb]. Begining with the
Holevo Bound above,

I[X;Y ] ≤ S [ρb]

I[X;Y ] ≤ S [ρa]

I[X;Y ] ≤ H [{pk}] −C [ρa]

C [ρa] + I[X;Y ] ≤ H [{pk}]
This bound relates how much we can know about which state a quantum system is in

and how coherent that state can be.
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C [ρa]
´¹¹¹¹¹¸¹¹¹¹¹¶
Coherence

+ I[X;Y ]
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
WhichPath

≤ H [{pk}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Preparation

Figure 1: A very simple way to see the relationship between which-path information and
coherence is to do the double slit with differently sized slits, so that you have some idea of
which slit a photon went through (more likely the larger) and yet without complete path
information you still have some coherence.

Example We’d like to extract some which-path information from ∣+⟩a = 1
√

2
∣0⟩a +

1
√

2
∣1⟩a without completely destroying the coherence between ∣0⟩a and ∣1⟩a. The “prepara-

tion entropy” here is H [{1
2 ,

1
2
}] = 1.

We introduce a ∣θ⟩b = cos(θ)∣0⟩b + sin(θ)∣1⟩b ancilla qubit and then perform a CNOT to
entangle them. Notice that if we choose ∣θ⟩ = ∣0⟩ we gain full path information, since

∣+⟩a∣0⟩b
CNOTÐÐÐÐ→ ∣00⟩ + ∣11⟩√

2

and if we choose ∣π4 ⟩ = ∣+⟩ we gain no path information, because

∣+⟩a∣+⟩b
CNOTÐÐÐÐ→ ∣+⟩a∣+⟩b

It will be more interesting to us to see something in between, such as ∣π6 ⟩.
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∣+⟩a∣
π

6
⟩b = (∣0⟩a + ∣1⟩a√

2
)(

√
3∣0⟩b + ∣1⟩b

2
) =

√
3

2
√

2
∣00⟩ + 1

2
√

2
∣01⟩ +

√
3

2
√

2
∣10⟩ + 1

2
√

2
∣11⟩

Performing CNOT to entangle them:

√
3

2
√

2
∣00⟩ + 1

2
√

2
∣01⟩ +

√
3

2
√

2
∣11⟩ + 1

2
√

2
∣10⟩

Let’s write this using the frame work above.

∣ψ⟩ = ∑
j

√
p(j)∣j⟩a∣ηj⟩b =

1√
2
∣0⟩a (

√
3

2
∣0⟩b +

1

2
∣1⟩b) +

1√
2
∣1⟩a (

1

2
∣0⟩b +

√
3

2
∣1⟩b)

So we have the path states, ∣0⟩a and ∣1⟩a, as well as the detector states

∣η0⟩ =
√

3

2
∣0⟩b +

1

2
∣1⟩b ∣η1⟩ =

1

2
∣0⟩b +

√
3

2
∣1⟩b

Now, by measuring B we can gain some (but not perfect) information about which
path the photon is in. Let’s calculate the coherence. First,

ρa = ∑1
j,k=0

√
p(j)p(k)⟨ηj ∣ηk⟩b∣k⟩a⟨j∣a

= 1
2 ∣0⟩a⟨0∣a +

√

3
4 ∣0⟩a⟨1∣a +

√

3
4 ∣1⟩a⟨0∣a + 1

2 ∣1⟩a⟨1∣a

∼
⎡⎢⎢⎢⎢⎣

1
2

√

3
4

√

3
4

1
2

⎤⎥⎥⎥⎥⎦
To find the entropy of this we need the eigenvalues.

0 =
RRRRRRRRRRRRR

1
2 − λ

√

3
4

√

3
4

1
2 − λ

RRRRRRRRRRRRR
0 = (1

2 − λ)
2 − 3

16

0 = λ2 − λ + 1
4 −

3
16

0 = λ2 − λ + 1
16

λ = 1
2 ±

1
2

√
(−1)2 − 4

16

λ = 1
2 ±

1
2

√
3
4

λ = 1
2 ±

√

3
4

λ ≈ 0.067,0.933
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and therefore the coherence is

C[ρa] = S
⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣

1
2 0

0 1
2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
− S

⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣

1
2

√

3
4

√

3
4

1
2

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
= 1 −H [{0.067,0.933}] ≈ 0.645 bits

From the coherence and which-path bound we have that

C [ρa] + I[X;Y ] ≤ H [{pk}]

0.645 + I[X;Y ] ≤ 1

I[X;Y ] ≤ 0.355

On average, at most 0.355 bits of which-path information can be extracted from this
state.

∎

Quantum Eraser

In the quantum eraser experiment, we can turn a knob to switch between knowing or not
knowing the which-path information from a double slit. A pair of polarization-entangled
photons are produced in the Bell state

∣Ψ+⟩ =
∣01⟩ + ∣10⟩√

2
= i∣R⟩∣R⟩ + i∣L⟩∣L⟩√

2

Where we’ve written the state in both the vertical/horizontal polarization basis, {∣0⟩, ∣1⟩},
as well as the circular polarization basis, where

∣ ↺⟩ = ∣L⟩ = ∣0⟩ + i∣1⟩√
2

∣ ↻⟩ = ∣R⟩ = ∣0⟩ − i∣1⟩√
2

Typically, these kinds of entangled photons are produce via “spontaneous parametric
down conversion”, where a high frequency photon is spontaneously absorbed by an atom
in a material and two new polarization-entangled photons photons are generated in two
new directions.

Each photon in the pair is directed (eventually) two detectors DA and DB, which
connect to a “coincidence counter”. By disregarding events where only one detector
clicks and keeping those where both click, we can select for those events (likely) generated
by the entangled pair.
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Scenario One: The B photon is sent through a pair of slits, producing the usual
double slit interference pattern described as the sum of states coming out of each slit,

∣ψ1(x)⟩ + ∣ψ2(x)⟩√
2

where x describes the position at the “screen” where we hope to witness interesting
interference patterns. The source of the B photon is small and the wavelength is well-
defined, so this is like creating coherent light with a single slit before the double slit.2

We detect the interference patterns using detector DB, which can move to various
values of x. The entanglement of the photons’ polarizations doesn’t affect the interference
pattern, because knowing about the polarization of A doesn’t tell you anything about
which slit B went through.

Figure 2: The set up for the quantum eraser.

Scenario Two: To mark the two slits, quarter wave plates,

Q(π
4
) = i∣+⟩⟨+∣ + ∣−⟩⟨−∣ ∼

⎡⎢⎢⎢⎢⎣

1+i
2

−1+i
2

−1+i
2

1+i
2

⎤⎥⎥⎥⎥⎦
= 1 + i

2

⎡⎢⎢⎢⎢⎣

1 i

i 1

⎤⎥⎥⎥⎥⎦

Q(−π
4
) = ∣+⟩⟨+∣ + i∣−⟩⟨−∣ ∼

⎡⎢⎢⎢⎢⎣

1+i
2

1−i
2

1−i
2

1+i
2

⎤⎥⎥⎥⎥⎦
= 1 + i

2

⎡⎢⎢⎢⎢⎣

1 −i

−i 1

⎤⎥⎥⎥⎥⎦
aligned at θ = ±π4 to the vertical, are positioned with one behind each slit. We can

quickly calculate that,

2Which is how Young originally did it.
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Q(π
4
) ∣0⟩ ∼ 1 + i

2

⎡⎢⎢⎢⎢⎣

1 i

i 1

⎤⎥⎥⎥⎥⎦
( 1

0
) = 1 + i

2
( 1
i

) ∼ ei
π
4 ∣L⟩

Q(−π
4
) ∣0⟩ ∼ 1 + i

2

⎡⎢⎢⎢⎢⎣

1 −i

−i 1

⎤⎥⎥⎥⎥⎦
( 1

0
) = 1 + i

2
( 1
−i ) ∼ ei

π
4 ∣R⟩

Q(π
4
) ∣1⟩ ∼ 1 + i

2

⎡⎢⎢⎢⎢⎣

1 i

i 1

⎤⎥⎥⎥⎥⎦
( 0

1
) = 1 + i

2
( i

1
) = −1 + i

2
( 1
−i ) ∼ −e−i

π
4 ∣R⟩

Q(−π
4
) ∣1⟩ ∼ 1 + i

2

⎡⎢⎢⎢⎢⎣

1 −i

−i 1

⎤⎥⎥⎥⎥⎦
( 0

1
) = 1 + i

2
( −i

1
) = 1 − i

2
( 1
i

) ∼ e−i
π
4 ∣L⟩

We’ve seen this before. When light polarized at an angle of 45o to the “slow axis” of
a QWP, it is converted to circularly polarized light. We can define the operator Q as the
effect of both of these QWPs,

Q∣0⟩∣ψ1(x)⟩ = ei
π
4 ∣L⟩∣ψ1(x)⟩

Q∣0⟩∣ψ2(x)⟩ = ei
π
4 ∣R⟩∣ψ2(x)⟩

Q∣1⟩∣ψ1(x)⟩ = −e−i
π
4 ∣R⟩∣ψ1(x)⟩

Q∣1⟩∣ψ2(x)⟩ = e−i
π
4 ∣L⟩∣ψ2(x)⟩

Defining C to be the which-path, interference generating component of photon B, the
original state was

(∣0⟩a∣1⟩b + ∣1⟩a∣0⟩b√
2

)(∣ψ1⟩c + ∣ψ2⟩c√
2

)

which is separable. Therefore the which-path information is left alone and we see
interference. But Q makes the which-path information available. Define the new state to
be ∣η⟩ to be the new state.

∣η⟩

= Q( ∣0⟩a∣1⟩b+∣1⟩a∣0⟩b√

2
) ( ∣ψ1⟩c+∣ψ2⟩c

√

2
)

= − e
−i π4

2 ∣0⟩a∣R⟩b∣ψ1⟩c + e−i
π
4

2 ∣0⟩a∣L⟩b∣ψ2⟩c + ei
π
4

2 ∣1⟩a∣L⟩b∣ψ1⟩c + ei
π
4

2 ∣1⟩a∣R⟩b∣ψ2⟩c

= e−i
π
4

2 ∣0⟩a [−∣R⟩b∣ψ1⟩c + ∣L⟩b∣ψ2⟩c] + ei
π
4

2 ∣1⟩a [∣L⟩b∣ψ1⟩c + ∣R⟩b∣ψ2⟩c]
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Tracing over A we see that the paths are clearly marked by their polarizations

Tra[∣η⟩⟨η∣] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2 ( ∣R⟩b∣ψ1⟩c−∣L⟩b∣ψ2⟩c

√

2
) ( ⟨R∣b⟨ψ1∣c−⟨L∣b⟨ψ2∣c

√

2
)

+1
2 ( ∣L⟩b∣ψ1⟩c+∣R⟩b∣ψ2⟩c

√

2
) ( ⟨L∣b⟨ψ1∣c+⟨R∣b⟨ψ2∣c

√

2
)

and tracing over A and B we see that the pattern on the screen should be the “classical”
distribution, where there’s no relationship between the two slits.

Trab[∣η⟩⟨η∣] =
1

2
∣ψ1⟩c⟨ψ1∣c +

1

2
∣ψ2⟩c⟨ψ2∣c

As long as the QWPs are in place, this result is the rule: two bumps, one for each slit,
and no visible interference pattern.

Scenario Three: In the last scenario the double slit interference was lost because
it was possible, in theory, to know which slit the photon went through. However, this
which-slit information can be “erased”. In this last scenario we place a polarizer in from
of detector A that we can set at any angle, θ.

The coincidence detector allows us to efficiently do measurement projections; if the
polarizer is horizontally aligned, then the only states that will be acknowledged by the
coincidence detector will include ∣1⟩a. Aligning the polarizer at θ = 0, the coincidence
detector only includes states of the form

∣0⟩a (
∣R⟩b∣ψ1⟩c − ∣L⟩b∣ψ2⟩c√

2
)

and aligning it at θ = π
2 we only note states of the form

∣1⟩a (
∣L⟩b∣ψ1⟩c + ∣R⟩b∣ψ2⟩c√

2
)

In other words, as we move DB across a range of values of x, we find that it clicks
coincidentally with DA in a “two bump” (no interference) pattern.

However, if we align the polarizer in front of A at θ = ±π4 , things change dramatically.

Because ∣Ψ+⟩ = ∣++⟩−∣−−⟩√

2
, when we register a ∣±⟩ state at DA, we know that photon B has

the same polarization. Because the QWPs are aligned at ±π4 , the eigenstates of both are
{∣+⟩, ∣−⟩} (λ = 1 for one and λ = i for the other).
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We can very easily find that

Q(π
4
) ∣+⟩ = i∣+⟩ Q(−π

4
) ∣+⟩ = ∣+⟩

Q(π
4
) ∣−⟩ = ∣−⟩ Q(−π

4
) ∣−⟩ = i∣−⟩

and therefore

Q∣+⟩∣ψ1(x)⟩ = i∣+⟩∣ψ1(x)⟩

Q∣+⟩∣ψ2(x)⟩ = ∣+⟩∣ψ2(x)⟩

Q∣−⟩∣ψ1(x)⟩ = ∣−⟩∣ψ1(x)⟩

Q∣−⟩∣ψ2(x)⟩ = i∣−⟩∣ψ2(x)⟩

Once again, the original state before the QWPs is

(∣+⟩a∣+⟩b − ∣−⟩a∣−⟩b√
2

)(∣ψ1⟩c + ∣ψ2⟩c√
2

)

and with the QWPs it’s

i

2
∣+⟩a∣+⟩b∣ψ1(x)⟩c +

1

2
∣+⟩a∣+⟩b∣ψ2(x)⟩c −

1

2
∣−⟩a∣−⟩b∣ψ1(x)⟩c −

i

2
∣−⟩a∣−⟩b∣ψ2(x)⟩c

= 1√
2
∣+⟩a∣+⟩b (

i∣ψ1(x)⟩c + ∣ψ2(x)⟩c√
2

) − 1√
2
∣−⟩a∣−⟩b (

∣ψ1(x)⟩c + i∣ψ2(x)⟩c√
2

)

= 1√
2
∣+⟩a∣+⟩b (

i∣ψ1(x)⟩c + ∣ψ2(x)⟩c√
2

) + i√
2
∣−⟩a∣−⟩b (

i∣ψ1(x)⟩c − ∣ψ2(x)⟩c√
2

)

This means that when measure the pattern with DB coincident with photon A being
in the ∣+⟩ state, we’ll see interference! Doing the same conditioning on A being in the ∣−⟩
state we see another, complimentary interference pattern!

These two states

i∣ψ1(x)⟩c + ∣ψ2(x)⟩c√
2

i∣ψ1(x)⟩c − ∣ψ2(x)⟩c√
2

are complimentary in the sense that a bright spot in one will be a dark spot in the
other (assuming that each path contributes about equally, which is fair), because where
one pattern adds, the other subtracts.
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Evidently, we can “erase” the which-path information. More precisely, we find that we
can choose between having access to the which-path information and measuring the phase-
difference information. The interference patterns don’t magically show up or disappear
when we start measuring A in a particular way; they’re only visible when we keep track
of coincidence.3 Necessarily, the sum of these complimentary patterns is equal to the
no-interference “two bumps” pattern.

Remarkably, we can turn the knob on the angle of the polarizer in front of DA and
smoothly move from a two-bump pattern to wave interference. For example, if θ = 0.001 and
DA clicks, then the state is probably ∣0⟩, meaning that we don’t expect to see interference,
but it’s also slightly more likely to be ∣+⟩ than ∣−⟩, meaning that one interference pattern
is brighter than the other.

Delayed Choice Quantum Eraser

It may seem possible that in the quantum eraser experiment a conscious observer, by
choosing particular measurements for A, is imposing a new state on B. That’s worrisome
for a lot of reasons.

The delayed choice quantum eraser attacks that notion in two ways. First, the choice
of which kind of measurement to do on A is made after DB has clicked, so there’s no way
that A will directly influence the outcome of measurements on B.4 Second, the decision
about which measurement to make is fundamentally random; nobody needs to bother being
conscious.

The essential details are the same: photon B takes two paths and creates (possibly) an
interference pattern that can be measured with a movable detector, D0. However, rather
than using QWPs to entangle the polarization and which-path states, we start photons A
and B with entangled which-path states, ∣top⟩ and ∣bot⟩.

If D3 or D4 click, then the which-path information is revealed. We see this in practice
as a disappearance of the interference fringes for the coincident detections in D0. How-
ever, if D1 clicks, then there’s no way to recover the which-path information; it has been
erased. However, exactly as with the regular quantum eraser experiment, the measure-
ments made by D1 and D2 determine the phase difference between the two paths giving
rise to complimentary interference patterns (figure 4).

Lacking coincidence counting, the pattern detected by D0 looks exactly like the pattern
produced by a complete lack of interference: “two bumps”. But with coincidence counting,
where we gain classical information from the far side of an entangled pair, we find that

3Yet another example of classical information changing a density matrix.
4Assuming you believe in causality, which the past has made a pretty compelling case for. The future

has yet to weigh in.
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Figure 3: The delayed choice quantum eraser (somewhat idealized). The “slits” in this
experiment are two atoms, which release a photon randomly. However, as with an actual
double slit, the photons in this experiment come from a superposition of both sources.
Because this isn’t a real double slit with prepared coherent light, the phase relationship is
induced through measurements (coincidence between D0 and either D1 or D2).

Figure 4: Empirical coincidence rates between D0 and D1 (left), D2 (middle), and D3

(right). Notice the complimentary interference patterns for D1 and D2 as well as the lack
of interference for D3.

there are patterns. Aggregating D3 and D4 we find that we can explain the two bumps as
being generated by two sources of light. Simple enough. But aggregating D1 and D2 we
can equally well explain the exact same two bump pattern as a being the overlap of two
coherent interference patterns.

The same result, a particular photon arriving at a particular location to be detected by
D0 can be explained (consistently) in more than one way, depending on how its entangled
twin is measured. Once again, the measurement of one photon has no direct effect of any
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kind on the pattern produced by the other (on its own, D0 always measures two bumps),
but the measurement can give us information that explains the pattern we see.

“Quantum Eraser” Ð→ “Coherence Selector”

Notice that in the quantum eraser we don’t simply “erase” the which-path information,

we actively select for a coherent state.

In the quantum eraser experiment, by positioning the polarizer at A to project using
either P0 or P1, we make the which-path information available. A further measurement of
the photon’s polarization at the location of the screen would real both where it hits the
screen as well as which slit it had gone through.

By positioning the A polarizer to project onto either P+ or P−, we select for either of
the coherent states

i∣ψ1(x)⟩c + ∣ψ2(x)⟩c√
2

i∣ψ1(x)⟩c − ∣ψ2(x)⟩c√
2

As far as quantum computation is concerned, the important thing about the delayed
choice quantum eraser is that it projects with equal probability onto four path states, two
with maximum coherence and two with maximum which-path information:

D1 ∶
∣ψ1⟩ + ∣ψ2⟩√

2
D2 ∶

∣ψ1⟩ − ∣ψ2⟩√
2

D3 ∶ ∣ψ1⟩ D4 ∶ ∣ψ2⟩

The properties of these two states make sense in the context of the coherence and
which-path bound. The states selected by D1 and D2 have maximum coherence, but
zero which-path information. The states selected by D3 and D4 have zero coherence and
complete which-path information.

It may bother you that we seem to be choosing between two different measurements.
The delayed choice quantum eraser is more accurately be expressed as a POVM:

Π1 = 1
4 ( ∣ψ1⟩+∣ψ2⟩

√

2
) ( ⟨ψ1∣+⟨ψ2∣

√

2
)

Π2 = 1
4 ( ∣ψ1⟩−∣ψ2⟩

√

2
) ( ⟨ψ1∣−⟨ψ2∣

√

2
)

Π3 = 1
4 ∣ψ1⟩⟨ψ1∣

Π4 = 1
4 ∣ψ2⟩⟨ψ2∣

But how is it possible to
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Exercises

1) Dialing For Patterns

A eiθ phase delay has been inserted into the delayed choice quantum eraser experiment as
shown in figure 5. This question is mostly conceptual, so if you’re doing a lot of math, you
may be working too hard.

Figure 5: The DCQE with an extra phase added to one path.

a) Describe in words the effect of the phase delay on the coincidence patterns between
D0 with each of D1, D2, and D3.

b) As you increase the phase delay, θ, do the individual interference fringes (coincident
with either D1 or D2) physically move up or down? Explain your reasoning.

2) Which-Math Information

Here you’ll be looking at the coherence/which-path relation:

C [ρa]
´¹¹¹¹¹¸¹¹¹¹¹¶
Coherence

+ I[X;Y ]
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
WhichPath

≤ H [{pk}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Preparation

Bob wants to measure the state ∣−⟩a = ∣0⟩a−∣1⟩a
√

2
. After entangling it with a second

system, he has the state

∣ψ⟩ = ∣0⟩a∣+⟩b − ∣1⟩a∣1⟩b√
2

To measure this, Bob chooses a very simple POVM; a measurement in the computa-
tional basis.
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Π0 = ∣0⟩b⟨0∣b Π1 = ∣1⟩b⟨1∣b

a) What is the preparation entropy for ∣−⟩a?

b) Define ρ = ∣ψ⟩⟨ψ∣. What is the coherence of ρa?

c) What is the mutual information between the state and Bob’s measurement results?

d) Verify that the coherence/which-path inequality holds.

e) How can Bob alter his POVM to increase the coherence of ρa?

3) Coherence Adherence

∣ψ⟩ = ∣0⟩a∣?⟩b + ∣1⟩a∣?⟩b√
2

ρ = ∣ψ⟩⟨ψ∣

a) Find states for B that will minimize the coherence of ρa. What pair of states, when
measured, would immediately reveal the state of A?

b) Find states for B that will maximize the coherence of ρa. What pair of states, when
measured, would reveal nothing about the state of A?
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