
QI Lecture 22

Observers

By carefully isolating two quantum systems and inducing one to measure the other (and
record the result) we gain some insight into the nature of measurement. Previously we have
extrapolated from interactions between isolated systems to understand interactions with
the environment. Here we look at interactions between quantum systems and “observers”,
themselves quantum systems with the ability to record information.

We find, despite the daunting philosophical repercussions, that the rules governing the
behavior of isolated quantum systems describe the behavior of observers just as well.

Wigner’s Friend Experiment

Wigner’s Friend is a thought experiment in the vein of Schrödinger’s cat. In this thought
experiment, Wigner’s friend, W , is the “cat in the box” and they’re asked to do a measure-
ment (observe a diagonal photon, count radioactive decays, etc.) on a principle quantum
system, P . The system that Wigner’s Friend observes is in a superposition of states, so
from their perspective the state “collapses” to one of the states in the measurement basis.

However, from Wigner’s perspective, both the principle system and his Friend are in a
superposition of states. In fact, they’re entangled. The question is: does Wigner’s Friend
collapse the system they’re observing, or do they become entangled with it? Does the
observation lead to collapse, like this

α∣ψ⟩p∣?⟩w + β∣φ⟩p∣?⟩w Ð→ ∣ψ⟩p∣“ψ”⟩w
or entanglement, like this

α∣ψ⟩p∣?⟩w + β∣φ⟩p∣?⟩w Ð→ α∣ψ⟩p∣“ψ”⟩w + β∣φ⟩p∣“φ”⟩w
The quotations in ∣“ψ”⟩w are used to signify that the “pointer” system is not in the

state ∣ψ⟩, but is a record of ∣ψ⟩ being observed.

A not-unreasonable way to define an “observer” is as something that can make a
verifiable measurement of a quantum system, by encoding the result of that measurement
in another physical quantum system. So Alice and Bob are observers not because they’re
people or often conscious, but because they have a pen and paper.
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In this experiment we want to know whether an observation of a test system is objective,
in the sense that every other observer in the universe must agree with an observation once
it’s made, or if it’s subjective, meaning that different observers may disagree. We do this by
showing that the “principle” and “pointer1” quantum systems are entangled and therefore
in a superposition.

To date, there are no examples of quantum phenomena that are strictly scale depen-
dent. Entanglement can be established across the planet, coherence can be maintained
for minutes at a time, and visible macroscopic objects2 can be placed in superpositions of
states. Now we find that observation, that bottomless source of quantum weirdness, obeys
quantum mechanical laws. We find that there’s nothing special about the act of measuring
and recording information. Even such information processing systems are happy to be in
a superposition of states.

This is a profound result with philosophical repercussions that should keep you awake
at night.

Just to really draw a line under it: this is not theoretical. The experiment described
here is from the paper “Experimental rejection of observer-independence in the quantum
world”,3 where they demonstrated their claims to 5 sigma certainty.

Inside Wigner’s Lab

In the experiment “Wigner’s Lab” is everything inside the dotted box in figure 3. It’s a
polarizing beam splitter that measures the polarization of the incoming photon, a, without
changing it. The result is recorded on qubit c and qubit b is used to announce that a
measurement has been successfully done.

The initial state is

∣ψ⟩a∣Ψ−⟩bc = [α∣0⟩a + β∣1⟩a] (
∣01⟩bc − ∣10⟩bc√

2
) = α√

2
∣001⟩ − α√

2
∣010⟩ + β√

2
∣101⟩ − β√

2
∣110⟩

The polarizing beam splitter (PBS) transmits horizontal photons and reflects vertical
photons with an extra phase of i. In this experiment, coincidence counters disregard occa-
sions where both photons leave by the same path, so we project onto Span{∣00⟩ab, ∣11⟩ab}.

Taking this selection into account, we can describe the effect of this PBS as

1or “record”, which is why we’re using the subscript r.
2Tiny needles about 60µm long (barely visible) were placed in a superposition of vibrational modes.

This is demonstrated in “Quantum ground state and single-phonon control of a mechanical resonator”, by
O’Connell, A. D.; Hofheinz, M.; Ansmann, M.; Bialczak, Radoslaw C.; Lenander, M.; Lucero, Erik; Neeley,
M.; Sank, D.; Wang, H.; Weides, M.; Wenner, J.; Martinis, John M.; Cleland, A. N.

3By Massimiliano Proietti, Alexander Pickston, Francesco Graffitti, Peter Barrow, Dmytro Kundys,
Cyril Branciard, Martin Ringbauer, and Alessandro Fedrizzi
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Figure 1: “Wigner’s Friend” is a source of polarization-entangled photon pairs, a polarizing
beam splitter, and a measurement that selects properly recorded states. This set up maps
∣0⟩a → 1

2 ∣0⟩a∣1⟩c and ∣1⟩a → −1
2 ∣1⟩a∣0⟩c.

G = −∣00⟩⟨00∣ + ∣11⟩⟨11∣

That negative is the i2 collected from the two reflecting horizontal states. The state
after the PBS is therefore

Gab∣ψ⟩a∣Ψ−⟩bc = −
α√
2
∣001⟩ − β√

2
∣110⟩

We’ve left this unnormalized to keep track of the fraction of the original state that
has been selected for.4 In this case, the magnitude squared of the state is 1

2 , so there’s a
1
2 chance of seeing this state and a 1

2 chance that we’ll have some other state, that we’ll
ignore because it’s been rejected by the coincidence counters.

This is a beautiful example of error correction at work. We’re selecting only for those
states in which a and b are the same and removing all the “error” states where they’re not.

Wigner (and the rest of the outside world) need to know that a measurement has
successfully been done without discovering the result. This is a perfect job for a quantum
eraser. Qubit b is directed through a quarter wave plate aligned at π

4 followed by a half
wave plate aligned at π

8 . We’ll denote combination of these operations as E and we find
that

4This is a “non-trace preserving quantum operation”, meaning there’s a chance that we’ll apply this
operation (50% chance of a random selection making this happen) and there’s a chance we won’t. Also, we
have a great opportunity to be lazy by not renormalizing with each step.
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E =H (π
8
)Q(π

4
) ∼ (− 1√

2
[ 1 1

1 −1
])(e

iπ
4

√
2
[ 1 i
i 1

]) = − 1√
2
[ i i

1 −1
]

which has a useful effect,

E∣0⟩ = −i∣0⟩ − ∣1⟩√
2

= −i∣R⟩ E∣1⟩ = −i∣0⟩ + ∣1⟩√
2

= −i∣L⟩

where ∣L⟩ = ∣0⟩+i∣1⟩√

2
and ∣R⟩ = ∣0⟩−i∣1⟩√

2
are the left and right circular polarization states.

So after the quarter and half wave plates, the state of the system is

EbGab∣ψ⟩a∣Ψ−⟩bc = −
α√
2
∣0⟩a (

−i∣0⟩b − ∣1⟩b√
2

) ∣1⟩c −
β√
2
∣1⟩a (

−i∣0⟩b + ∣1⟩b√
2

) ∣0⟩c

Before going to a detector, b goes through a horizontal polarizing filter5, so that the
detector only clicks for ∣1⟩b. In other words, we select for and execute a projection, P (1) =
∣1⟩⟨1∣, that leaves the state as

P
(1)
b EbGab∣ψ⟩a∣Ψ−⟩bc =

α

2
∣011⟩ − β

2
∣110⟩

Finally, the state leaving Wigner’s Lab is

∣Ω⟩ = α
2
∣0⟩a∣1⟩c −

β

2
∣1⟩a∣0⟩c

where the extra factor of 1
2 in the amplitude signifies that this state has a one in four

chance of existing.
Notice that we’ve executed a very gentle “observation” in the computational basis. The

state of a has been measured and physically recorded into c, such that ∣1⟩c = ∣“0”⟩c and
∣0⟩c = ∣“1”⟩c. The b photon has done two things: announce the success of that measurement
without revealing the result, as well as nailing down the phase relationship between the

states. This isn’t a given; if the final polarizing filter had been P
(0)
b , then the state exiting

the Lab would be ∣Ω⟩ = α
2 ∣0⟩a∣1⟩c +

β
2 ∣1⟩a∣0⟩c.

Outside Wigner’s Lab

Outside of Wigner’s Lab, we need to choose whether to check that Wigner’s Friend accu-
rately did their test, or if Wigner’s Friend and their observation are in a superposition.

To check that they’ve done their job right, we feed in a known state and measure a and
c in the computational basis.

5In the original experiment they used another polarizing beam splitter to direct the vertical state away
from the detector, but the effect is the same.
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∣ψ⟩a = ∣0⟩a Ð→ ∣Ω⟩ac =
1

2
∣01⟩ac ∣ψ⟩a = ∣1⟩a Ð→ ∣Ω⟩ac = −

1

2
∣10⟩ac

The results are always opposites of each other and the a channel remains the same,
meaning that Wigner’s Friend does accurate measurements.

To check that Wigner’s Friend is in a superposition, we input a maximally coherent
state

∣ψ⟩a = ∣±⟩a =
∣0⟩a ± ∣1⟩a√

2
Ð→ ∣Ω⟩ac =

1

2
∣Ψ∓⟩ac =

1

2
(∣01⟩ac ∓ ∣10⟩ac√

2
)

In other words, we can verify that the principle and pointer states are explicitly en-
tangled, by measuring the output in the Bell basis. Evidently, Wigner’s Friend is in a
superposition of states and they’re entangled with the state they’re observing.6 No col-
lapse involved.

Clear as a Bell Test

The standard way to demonstrate quantum behavior7 is to use a Bell test. In this case, we
set up two identical experiments, and send entangled photons into each, with one rotated
by π

8 . We do this so that our pairs of measurements are offset from each other, exactly as
they were in the Bell test from lecture 11. In this case Alice and Bob can both do the same
pairs of measurements, with the π

8 offset supplied by a polarization rotator as opposed to
a rotation of measurement apparatus (which would be difficult in this case).

Figure 2: The relative alignments of measurements needed to maximize the CHSH inequal-
ity.

The measurement operators we apply at the output are either

6One can’t help wondering what that feels like (for someone else) to be entangled.
7or to at least rule out local realism
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A0 = Ia ⊗ [∣0⟩c⟨0∣c − ∣1⟩c⟨1∣c]

or

A1 = ∣Ψ+⟩ac⟨Ψ+∣ac − ∣Ψ−⟩ac⟨Ψ−∣ac
with Bob’s measurements, B0 and B1, defined in exactly the same way for the output of

the second Lab. Although we’re not directly comparing the polarizations of two photons,
the idea here is exactly the same as we saw in lecture 11.

The ±1 results from these observables are plugged into the CHSH inequality

S = E [a0b0] +E [a1b0] +E [a1b1] −E [a0b1]

and once again we find that S = 2
√

2 > 2. In other words, because they can’t be de-
scribed using a probability distribution, the principle/pointer space cannot be in a definite
(and merely unknown) state.

Figure 3: To do a Bell test we compare two measurements on the outputs. Just as with
the original CHSH test, each measurement is offset from its partner by π

4 and the two pairs
are offset by π

8 relative to each other.

As always, there are loopholes that this particular experiment doesn’t cover; possible
ways for the universe to conspire (on an unnerving scale) to make definite states act like
superpositions.

The Rules of Entanglement

Instead of using postulate three, the declared rules for measurement, we have the option
of describing measurements as an entanglement between systems.

6



Orthogonality of Repeatably Measured States

One of the first quantum mechanical rules any physicist learns is that repeated observations
produce the same results. In the context here, that means that we need the unitary operator
that marks the pointer state to leave the principle system intact. We’ll find it interesting
to consider two states left intact by the same measurement:

U ∣ψ⟩p∣?⟩r = ∣ψ⟩p∣“ψ”⟩r U ∣φ⟩p∣?⟩r = ∣φ⟩p∣“φ”⟩r
By unitarity, we can take the inner products of these two equations to get

⟨φ∣ψ⟩p = ⟨φ∣ψ⟩p⟨“φ”∣“ψ”⟩r
which implies that either ⟨φ∣ψ⟩p = 0 or ⟨“φ”∣“ψ”⟩r = 1. Both of these are perfectly valid

and worth considering. In the example above, when Alice measured “3 vs. not 3”, any two
linear combinations of ∣0⟩ and ∣1⟩ would be recorded as ∣“ /3 ”⟩, and yet there’s no need for
them to be orthogonal to one another.

The other option, where ⟨φ∣ψ⟩p = 0, is more interesting. This says that if the results
of the measurements of two states are distinct from each other and repeatable, then those
states must be orthogonal. This is yet another beautiful example of orthogonality implying
“classical behavior”. In this case we find that orthogonal states can be verified repeatably,
very much as we expect from classical states.

The structure of measurements are quickly coming into focus. Repeatably measuring a
state without changing it implies the application of a projection operator (since P 2 = P ) and
the fact that repeatably measured states corresponding to distinct results are orthogonal
implies that these projection operators are themselves orthogonal.

Selection Ð→ Projection

We have a heck of a tool at our fingertips. We’ve seen previously that POVMs can be
described as entanglement with a second system followed by a measurement in that system.
But this is essentially just the “principle” and “pointer” systems at work. Right off the
bat, we find that entanglement looks a lot like measurements.

Example Assume the state

∣ψ⟩ = α∣1⟩ + β∣2⟩ + γ∣3⟩

to which Alice does a “three or not three” measurement. The effect can be easily
calculated through the projective measurement postulates, but we can also think of mea-
surements as merely labeling the pointer space; a unitary operator defined as
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U ∣1⟩p∣?⟩r = ∣1⟩p∣“ /3 ”⟩r U ∣2⟩p∣?⟩r = ∣2⟩p∣“ /3 ”⟩r U ∣3⟩p∣?⟩r = ∣3⟩p∣“3”⟩r

U[α∣1⟩p + β∣2⟩p + γ∣3⟩p]∣?⟩r
= α∣1⟩p∣“ /3 ”⟩r + β∣2⟩p∣“ /3 ”⟩r + γ∣3⟩p∣“3”⟩r
= [α∣1⟩p + β∣2⟩p] ∣“ /3 ”⟩r + γ∣3⟩p∣“3”⟩r

Notice that if you were to ask Alice the result of her measurement and the state that
remains the answers would be

[α∣1⟩p + β∣2⟩p] ∣“ /3 ”⟩r or γ∣3⟩p∣“3”⟩r
Up to normalization and an unimportant global phase, these are exactly the states we’d

expect from a projective measurement using P3 = ∣3⟩⟨3∣ and P/3 = ∣1⟩⟨1∣ + ∣2⟩⟨2∣. Here we see
that the evolution of the system as a whole is strictly unitary, while the perspective of any
particular selected state is non-unitary, since it perceives projections.

We already know that, given the distinct pointer states, ∣“ /3 ”⟩r and ∣“3”⟩r, the two
selected states, α∣1⟩p + β∣2⟩p and γ∣3⟩p, should be orthogonal (and indeed they are!).

∎

So repeatably measurable states correspond to the eigenspaces of the projection oper-
ators of a measurement.

Linearity implies that the evolution of states attached to a given pointer state are
independent.

Spookiness

Although we’ve used entanglement continuously so far, it’s important to stop and consider
what the world looks like through entanglement. Consider the most basic example of
entanglement. If Alice and Bob share ∣Φ+⟩ab and haven’t done any measurements on it,
then the initial state of the system is

∣?⟩α∣?⟩β ∣Ψ+⟩ab
where a and b are the principle system, while α and β are the pointer system. If Bob

measures his qubit in the computational basis, represented by the operator Lb, the result
is

Lb∣?⟩α∣?⟩β (∣01⟩ab + ∣10⟩ab√
2

) = ∣?⟩α (∣“1”⟩β ∣01⟩ab + ∣“0”⟩β ∣10⟩ab√
2

)
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This isn’t too remarkable. We saw the same thing in the Wigner’s Friend experiment
above; one system measures another and the two become entangled. If Alice now measures
her qubit in the computational basis, represented by the operator La, the result is

LaLb∣?⟩α∣?⟩β (∣01⟩ab + ∣10⟩ab√
2

) = ∣“0”⟩α∣“1”⟩β ∣01⟩ab + ∣“1”⟩α∣“0”⟩β ∣10⟩ab√
2

Notice that, while we haven’t explicitly used the measurement formalism with its im-
plied “wave function collapse” and “spooky action at a distance”, both Alice and Bob can
be forgiven for thinking they’ve just seen something spooky. However, no effect of any kind
actually passed between them. When they check notes, they’ll find that they have gotten
opposite results and each of them (and each version) could claim that their own result
forced their friend’s result. For example, if Alice find herself in the state ∣“0”⟩α, then she
can be confident that when she talks to Bob, he’ll be in the state ∣“1”⟩β. The “0 Alice”
could no more meet a “0 Bob” than she could meet the other “1 Alice”.

Quantum Erasing Bob

Something somewhat more subtle happens when Alice and Bob measure in different bases.
By agreeing to do this, Alice and Bob are putting the other into a coherent state; literally,
they’re mutually quantum erasing each others’ measurement results. Note that

∣Ψ+⟩ =
∣01⟩ + ∣10⟩√

2
= ∣0+⟩ − ∣0−⟩ + ∣1+⟩ + ∣1−⟩

2

implying that if Alice measures in {∣0⟩a, ∣1⟩a} while Bob measures in {∣+⟩b, ∣−⟩b}, then
the state of the system afterwards is

1

2
∣“0”⟩α∣“ + ”⟩β ∣0+⟩ab −

1

2
∣“0”⟩α∣“ − ”⟩β ∣0−⟩ab +

1

2
∣“1”⟩α∣“ + ”⟩β ∣1+⟩ab +

1

2
∣“1”⟩α∣“ − ”⟩β ∣1−⟩ab

When we looked at this before (lecture 8), we stopped at pointing out that Alice and
Bob will not have correlated states. Here we can say a bit more. From Alice’s perspective(s)
this is

1√
2
∣“0”⟩α∣0⟩a (

∣“ + ”⟩β ∣+⟩b − ∣“ − ”⟩β ∣−⟩b√
2

) + 1√
2
∣“1”⟩α∣1⟩a (

∣“ + ”⟩β ∣+⟩b + ∣“ − ”⟩β ∣−⟩b√
2

)

and from Bob’s perspective(s) this is

1√
2
∣“ + ”⟩β ∣+⟩b (

∣“0”⟩α∣0⟩a + ∣“1”⟩α∣1⟩a√
2

) + 1√
2
∣“ − ”⟩β ∣−⟩b (

−∣“0”⟩α∣0⟩a + ∣“1”⟩α∣1⟩a√
2

)
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In other words, as with Wigner’s Friend’s experiment, each sees the other as being in a
superposition of states, entangled with their qubit. Notice that the pointer states don’t get
special treatment; they’re in superpositions of states, even relative to each other. Alice, a
pointer state, sees Bob, another pointer state, as being in a superposition of states. The
question remains, what happens when they meet each other. Unlike when they measured
in the same basis, they don’t know what they’ll see when they meet up to check notes.

We need a way of predicting probabilities, and that means Born’s Rule.

Born’s Rule

We’ll start by showing that states with equal amplitude are equally likely. Laplace did
something similar with classical probability when he proposed “When nothing favors any
one outcome, symmetry implies they are equiprobable.”

Suppose we start with a principle state, ∣+⟩ = ∣0⟩+∣1⟩√

2
, and then measure it, recording the

result in an entangled pointer state,

1√
2
∣0⟩p∣“0”⟩r +

1√
2
∣1⟩p∣“1”⟩r

Each of the results, “0” or “1”, happen with some probability and not at the same time.
If we swap the principle states and then swap the pointer states, we find that nothing has
changed

∣0⟩p∣“0”⟩r + ∣1⟩p∣“1”⟩r√
2

swap pÐÐÐÐ→ ∣1⟩p∣“0”⟩r + ∣0⟩p∣“1”⟩r√
2

swap rÐÐÐ→ ∣1⟩p∣“1”⟩r + ∣0⟩p∣“0”⟩r√
2

We’re still relying on postulate 1 (a physical system is described by its state vector), so
the fact that we can swap the state and its record without changing anything implies that
the two results are equally likely,8 p0 = p1 = 1

2 . Therefore, we can say that the probabilities

are equal for each result of a measurement of ∣+⟩ = ∣0⟩+∣1⟩√

2
done in the computational basis.

We can repeat exactly the same reasoning for any pair of N equal-amplitudes, meaning
that pk = 1

N , ∀k.

We can recover the more general form of Born’s rule by “fine-graining” the pointer
space.9 Consider the state α∣0⟩ + β∣1⟩, where α ∝√

n and β ∝√
m, and define a family of

pointer states

∣“0”⟩r =
1√
n

n

∑
k=1

∣“0k”⟩r ∣“1”⟩r =
1√
m

m

∑
j=1

∣“1j”⟩r

8This isn’t a given: try repeating this with
√

3∣0⟩+∣1⟩

2
.

9We did something similar when we derived Shannon Entropy in lecture 7.
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and imagine a new “file cabinet space” (another place to keep records) correlated with
the pointer space such that a measurement/entanglement yields

[α∣0⟩p + β∣1⟩p]∣?⟩r ∣?⟩f Ð→
n

∑
k=1

∣0⟩p∣“0k”⟩r ∣“0k”⟩f +
m

∑
j=1

∣1⟩p∣“1j”⟩r ∣“1j”⟩f

This looks completely silly, but the idea is that we can now swap the principle and
pointer spaces together, followed by the file cabinet space, in order to show equiprobability
again. Therefore, the probability of each of the two results is proportional to the number
of terms in these two sums:

p(0) = n

n +m = ∣α∣2 p(1) = m

n +m = ∣β∣2

since we have α ∝√
n, β ∝√

m, and ∣α∣2 + ∣β∣2 = 1. More generally, the squaring of the
amplitudes derives from the Pythagorean theorem, which is a property of Hilbert spaces
(postulate 1).

Example We can extend this result to linear combinations of states, like the ones
from the earlier example

[α∣1⟩p + β∣2⟩p] ∣“ /3 ”⟩r or γ∣3⟩p∣“3”⟩r
Immediately we see that the probability of observing a 3 (of being ∣“ /3 ”⟩r) is ∣γ∣2.

The probability of the other state, α∣1⟩ + β∣2⟩, isn’t quite obvious. However, this state
is nothing special. We can just define it as a basis state, ξ∣1′⟩, and since the coordinate
transformation, U , is unitary we can calculate the magnitude of ξ.

ξ∗ξ⟨1′∣1′⟩ = [α∗⟨1∣ + β∗⟨2∣]U †U [α∣1⟩ + β∣2⟩]
∣ξ∣2 = [α∗⟨1∣ + β∗⟨2∣] [α∣1⟩ + β∣2⟩]
∣ξ∣2 = ∣α∣2 + ∣β∣2

That’s Pythagorus in a Hilbert space again. What we’ve just found is that the proba-
bility of ∣η⟩ = α∣1⟩ + β∣2⟩ is ⟨η∣η⟩. Or, given that ∣ψ⟩ = α∣1⟩ + β∣2⟩ + γ∣3⟩,

p(3) = [⟨ψ∣P †
3 ] [P3∣ψ⟩] = ⟨ψ∣P3∣ψ⟩ p(/3) = [⟨ψ∣P †

/3
] [P/3∣ψ⟩] = ⟨ψ∣P/3∣ψ⟩

∎
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The Rules of Measurement

In very short, the measurement postulates for projective measures (from lecture 16) are:

• 1-2) Measurements are a set of projection operators such that ∑m Pm = I.

• 3) A measurement of ∣ψ⟩ yields one outcome, m.

• 4) p(m) = ⟨ψ∣Pm∣ψ⟩

• 5) The state after a measurement is ∣ψm⟩ = Pm∣ψ⟩
√

p(m)
.

• 6) Unreported measurements produce a mixed state ρ = ∑m p(m)∣ψm⟩⟨ψm∣.

1-3 come from the orthogonality of repeated measurements. Repeatability ensures that
the operators are projections, and orthogonality ensures that the results are distinguishable.

4 is Born’s rule, which we just derived.

5 is another way of stating the fact that the component of the principle state that
remains is the part corresponding to a particular pointer state.

6 is about how to deal with regular probabilities (ignorance) rather than quantum
mechanics (see lecture 6). If you don’t know which state you have, you can still figure out
the probability of particular occurrences by adding up all the possible states weighted by
their probabilities.

Some Philosophy

The geocentric theory, where the Earth is at the center of the solar system, feels right.
After all, the Earth is clearly not moving (according to all of our animal senses). But there
are issues with the geocentric theory. When we look at the Galilean moons of Jupiter, or
even our own Moon, we find that they obey simple, elegant, and extremely precise physical
laws (Newton’s laws of motion and gravitation) and when we look at the other planets we
find that they weave and loop across the sky. To describe this motion “epicycles” were
invented; essentially just Fourier series used to approximate the path.

The problem with this is that we had to come up with excuses for why Jupiter’s moons
behaved one way, while Jupiter itself behaved another. It takes a lot of force to move
planets around and there didn’t seem to be anything responsible for doing it. The solution
turned out to be putting all matter on the same footing: the Sun is in the center (it turned
out) because it’s about a thousand times more massive than everything else put together,
and the anomalous motion of the other planets was just an observer effect caused by the
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motion of the Earth itself. Every object and planet, including the most important one,10

obeys the exact same set of universal laws.
All that said, if you want to find Saturn in the sky, epicycles are a much better way

to figure where to point your telescope. The full Newtonian (or even better, general
relativistic) treatment is a lot of work. You have to keep track of lots of things that
you don’t really need, like where Earth is, or how massive Saturn is, or how far apart
everything is, or the warping of the coordinate system. Epicycles are ultimately inaccurate
and don’t represent anything that physically exists, but they’re an efficient tool for backyard
astronomers who just want to know where to look. Add up a few vectors on a few circles:
easy.

Wave function collapse is a similar idea. We find that isolated quantum systems follow a
set of remarkably simple physical laws. By assuming that we and the universe at large exist
in a definite state, we force quantum mechanics to “contort” in ways that are not generally
feasible. Wave function collapse is inexplicable, requires the invention of new phenomena,
resists rudimentary investigation, and somehow directly contradicts and supersedes the
quantum mechanical laws established for isolated systems.

What we have with Wigner’s Friend is an entanglement framework for observation that
is the application of known physical laws and which doesn’t (as far as we know) require us
to introduce new phenomena. And while it is ontologically more satisfying, that doesn’t
necessarily mean it’s more useful. When you use entanglement to model measurement,
you have to keep track of a lot of information that you shouldn’t care about, such as
the “non-realized states” and their amplitudes. Wave function collapse retains only that
information that is pertinent to ourselves; the probability that you, personally, will see a
particular result and the state of your system given that result.

If you don’t care what other, distinct states of you are doing, you can rest assured that
they don’t care what you’re doing either. Not that there’s any reason to worry about those
other versions, but if you do worry about them, then they’re probably worried about you
too.

And... Consciousness?

Here’s what can be said. The definition of “observer” that we’re using here, “something
that can make a verifiable measurement of a quantum system, by encoding the result of that
measurement in another physical quantum system” is extremely broad. The combination
of circuit elements from the experiment above serves as an observer, because it measures
one quantum system and verifiably records the result into another.

Devices like geiger counters or single-photon detectors are physicals machines that
explicitly relay the distinct results of measurements on quantum systems. A mind can

10It’s Earth, unless someone has a very compelling argument otherwise.
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be used to store information about those results, so in precisely that sense a person is an
observer. And so is a chalkboard.
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